p38MAPK and MK2 Pathways Are Important for the Differentiation-Dependent Human Papillomavirus Life Cycle

Ayano Satsuka, Kavi Mehta, Laimonis Laimins
Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA

Amplification of human papillomaviruses (HPV) is dependent on the ATM DNA damage pathway. In cells with impaired p53 activity, DNA damage repair requires the activation of p38MAPK along with MAPKAP kinase 2 (MK2). In HPV-positive cells, phosphorylation of p38 and MK2 proteins was induced along with relocation to the cytoplasm. Treatment with MK2 or p38 inhibitors blocked HPV genome amplification, identifying the p38/MK2 pathway as a key regulator of the HPV life cycle.

Human papillomaviruses (HPV) infect stratified epithelium and induce a variety of lesions (1). A subset of HPV types, referred to as high risk, are the causative agents of cervical and other anogenital malignancies as well as many oral cancers (2–4). Papillomaviruses infect basal epithelial cells of stratified epithelium that become exposed through microwounds and establish a latent infection, in which viral genomes are maintained in the nucleus as low-copy-number episomes. As infected basal cells divide and one daughter cell leaves the basal layer, the cell differentiation program is initiated, which results in activation of viral gene expression and replication. HPV genomes do not encode DNA polymerases or replication factors except for the DNA helicase E1, and viral replication is dependent largely on host factors (5). It is, therefore, necessary for HPV-positive cells to retain the ability to reenter S/G2 upon differentiation (6). This process is mediated through the action of the E6 and E7 proteins that modulate the function of p53, Rb, and a number of other cell cycle regulators (7–9). In addition to maintaining cells active in the cell cycle, HPV genome amplification requires activation of the ATM (ataxia telangiectasia mutated) DNA damage pathway (10–14).

The ATM pathway is responsible for the DNA damage response (DDR) to double-strand DNA breaks and is mediated through the action of downstream kinases, such as CHK2 (15). The ATR pathway is activated by single-strand breaks as well as replication fork collapse and functions through CHK1 (16). While these two pathways generally act independently of each other, some overlap exists, such as when one pathway is deficient or compromised. A third DDR pathway has recently been described in cells with reduced or impaired p53 activity, and this pathway is mediated by the p38MAPK kinases (17–21). The p38MAPK pathway is activated in response to a variety of stress-induced signals, including DNA damage, osmotic shock, or cytokine signaling. p38MAPK phosphorylates a number of downstream effectors, such as c-Myc, c-Jun, and ATF2, but it specifically induces DDR through the phosphorylation of mitogen-activated protein (MAP) kinase-activated protein kinase 2 (MAPKAPK 2, or MK2) (20, 22–26). Activation of MK2 leads to phosphorylation of a series of downstream targets that result in G2/M arrest and DNA repair (21). While the DNA repair portion of the p38MAPK/MK2 pathway is activated by ATM or ATR kinases, it functions independently and in parallel to the activities of CHK1 and CHK2 (19, 21). Furthermore, p38MAPK/MK2 has been shown to be important for DDR in cells that have impaired p53 function, such as U2OS, HeLa, or immortalized fibroblasts with diminished p53 function (18). MK2 is relocalized to the cytoplasm upon activation, while activated CHK1 and CHK2 are retained in the nucleus (18). Keratinocytes that stably maintain high-risk HPV genomes have reduced levels of p53 through the action of E6/E6A complexes, as well as altered levels of acetylated p53 through E6 modulation of p300 activity (8). We therefore inves-
tigated if p38MAPK/MK2 played any role in the genome amplification of HPV-positive cells.

To determine what effect, if any, the p38/MK2 pathway plays in HPV replication, we first examined the levels and activation status of p38 and MK2 in normal and HPV-positive human keratinocytes in undifferentiated cells grown as monolayer cultures. For this analysis, the levels of p38/MK2 proteins were examined in a series of HPV-positive human keratinocyte cell lines that were generated by transfection with recircularized genomes from HPV-16, -18, and -31, as previously described (27), as well as a biopsy sample-derived cell line that is HPV-31 positive, CIN-612. All these HPV-positive lines stably maintain episomal copies of HPV genomes in undifferentiated monolayer cultures. As shown in Fig. 1A, the levels of total p38 were similar in both HPV-positive and normal keratinocyte cells as well as HFKs. Cells were seeded as monolayer cultures, followed by the addition of medium containing 1.5 mM Ca$^{2+}$ for 96 h (27), as previously described (11). Extracts were harvested at the indicated times and examined by Western blotting using the corresponding antibodies. Anti-p38 (S1981, D6H9) was obtained from Cell Signaling Technologies. (B) Levels of p-p38, p38, p-MK2, and MK2 following differentiation in high-calcium medium in the presence or absence of an ATM inhibitor. Undifferentiated cells were grown as monolayer cultures in the presence or absence of 5 μM ATM inhibitor KU-55933, and protein levels were determined by Western blotting. Lanes designated with Ca were induced to differentiate by the addition of high-calcium medium for 96 h with or without the presence of 5 μM KU-55933, and protein levels were examined by Western blotting. (C) Levels of phosphorylated ATM and total ATM following treatment with an ATM inhibitor. (D) Levels of p-MK2 in the absence or presence of a p38 inhibitor. Cells were seeded as monolayer cultures (left) or exposed to medium containing 1.5 mM Ca$^{2+}$ for 96 h (right) (11). The cells were left untreated or incubated with 10 μM p-p38 inhibitor SB203580 for 96 h. Extracts were harvested and examined by Western blotting using the corresponding antibodies. TG (transglutaminase) was used as a differentiation marker. β-Actin was used as a loading control.

FIG 2 The ATM pathway is activated in HPV-positive cells, and addition of ATM inhibitors blocks induction of p-p38 and p-MK2. (A) Levels of total and phosphorylated p-ATM upon differentiation of HPV-positive cells as well as HFKs. Cells were seeded as monolayer cultures, followed by the addition of medium containing 1.5 mM Ca$^{2+}$ for 96 h (27), as previously described (11). Extracts were harvested at the indicated times and examined by Western blotting using the corresponding antibodies. Anti-ATM (S1981, D6H9) was obtained from Cell Signaling Technologies. (B) Levels of p-p38, p38, p-MK2, and MK2 following differentiation in high-calcium medium in the presence or absence of an ATM inhibitor. Undifferentiated cells were grown as monolayer cultures in the presence or absence of 5 μM ATM inhibitor KU-55933, and protein levels were determined by Western blotting. Lanes designated with Ca were induced to differentiate by the addition of high-calcium medium for 96 h with or without the presence of 5 μM KU-55933, and protein levels were examined by Western blotting. (C) Levels of phosphorylated ATM and total ATM following treatment with an ATM inhibitor. (D) Levels of p-MK2 in the absence or presence of a p38 inhibitor. Cells were seeded as monolayer cultures (left) or exposed to medium containing 1.5 mM Ca$^{2+}$ for 96 h (right) (11). The cells were left untreated or incubated with 10 μM p-p38 inhibitor SB203580 for 96 h. Extracts were harvested and examined by Western blotting using the corresponding antibodies. TG (transglutaminase) was used as a differentiation marker. β-Actin was used as a loading control.
p-ATM was detected only in HPV-positive cells (Fig. 2A). The activity of ATM in HPV-positive cells was unchanged between normal HPV-positive cells, while total ATM levels were reduced. Consistent with previous studies, total ATM levels were reduced in HPV-positive cells upon differentiation (Fig. 2B). Treatment of HPV-positive cells with a p38 inhibitor KU-55933 also inhibited p-ATM (Fig. 2C). This demonstrated that phosphorylation of MK2 is induced upon differentiation of HPV-positive cells.

We previously demonstrated that the ATM DNA damage pathway is constitutively activated in HPV-positive cells and that it plays a critical role in controlling amplification upon differentiation (11). To investigate if ATM activation is linked to p38/MK2 activation in HPV-positive cells, the levels of ATM and its phosphorylated form (p-ATM) were examined by Western blotting. Consistent with previous studies, total ATM levels were relatively unchanged between normal and HPV-positive cells, while p-ATM was detected only in HPV-positive cells (Fig. 2A). The ATM inhibitor KU-55933 blocks phosphorylation of ATM along with its downstream targets and is specific (28). To determine if ATM was responsible for activating phosphorylation of MK2, HPV-positive cells were induced to differentiate in high-calcium medium and treated with KU-55933, and the levels of phosphorylated MK2 were examined by Western blotting. As seen in Fig. 2B, treatment of cells with KU-55933 blocked phosphorylation of p-p38 without affecting total levels of p38. Similarly, phosphorylation of MK2 was blocked following treatment of HPV-positive cells that had been induced to differentiate (Fig. 2B). These results indicated the ATM/MK2 pathway is active in differentiated HPV-positive cells. Cells were also treated with a negative control p38 inhibitor (Fig. 2D), and MK2 phosphorylation was significantly reduced, demonstrating a dependence on p-p38 activity.

Neither the p38 nor MK2 inhibitors had any effect on the expression of transglutaminase, a marker of epithelial differentiation (Fig. 2C) or proliferation (data not shown).

Upon DNA damage, the p38/MK2 complex relocalizes from the nucleus to the cytoplasm upon differentiation of HPV-positive cells (Fig. 2C). This relocalization of MK2 is important to investigate if the p38/MK2 pathway had any role in the regulation of HPV replication in undifferentiated and differentiated cells. In undifferentiated HPV-positive cells, treatment with either p38 or MK2 inhibitors showed no effect on genome copy number (Fig. 5A), indicating the p38/MK2 pathway is not involved in the stable maintenance of HPV genomes, even though ATM and p38 are activated. Upon calcium-induced differentiation, only about a quarter of cells amplify viral DNA, and the total amount of HPV DNA is increased (11). When HPV-positive cells were differentiated in the presence of either a p38 or MK2 inhibitor, genome amplification was significantly suppressed (Fig. 5B).
Our studies identified a novel role of the p38/MK2 pathway in the control of HPV amplification. The p38/MK2 pathway was found to be activated in HPV-positive cells upon differentiation, and it was observed to be critical for genome amplification. MK2 is a Ser/Thr kinase that is regulated through phosphorylation by p38 and it was observed to be critical for genome amplification. MK2 is found to be activated in HPV-positive cells upon differentiation, the control of HPV amplification. The p38/MK2 pathway was identified as an alternative pathway in the DNA damage response (17–21). One of the important downstream effectors of the DDR is the p53 tumor suppressor protein, whose activation can mediate cell cycle arrest to repair DNA damage or to induce apoptotic cell death (38). In p53-deficient cells, p38/MK2 functions as a third member of the DDR pathway (21). In our studies, we determined that MK2 phosphorylation is specifically induced upon differentiation of HPV-positive cells. As such, it is one of only three DNA damage factors that have been identified to be induced upon differentiation. In addition to p-MK2, γ-H2AX and p-NBS1 are two members of the ATM pathway (39) whose activation increases upon differentiation; this contrasts with ATM and CHK2, which are activated in both differentiated and undifferentiated cells (11). Since the DDR has no role in stable or transient HPV replication but only affects differentiation-dependent genome amplification, MK2 along with γ-H2AX and NBS1 are likely to be critical regulators of this process.

The MK2 pathway activates the genome amplification of HPV but not stable maintenance replication, which is consistent with our observation that active MK2 kinases are only detected upon p-MK2 action. What role HSP27 plays in the HPV life cycle will be a focus of future studies. Finally, MK2 appears to act in parallel to CHK1 and CHK2 to activate DNA repair factors that are necessary for HPV genome amplification. Given the different cellular localizations of MK2 and CHK1/CHK2, these kinases seem to act coordinately to induce the full spectrum of DNA damage factors.
ACKNOWLEDGMENTS

This work was supported by a grant to L.L. from the National Cancer Institute (CA142861). We thank the many colleagues who provided technical assistance and were involved in manuscript preparation.

REFERENCES

