Murine Leukemia Virus Uses NXF1 for Nuclear Export of Spliced and Unspliced Viral Transcripts

Toshie Sakuma, a Jaime I. Davila, b Jessica A. Malcolm, a Jean-Pierre A. Kocher, b Jason M. Tonne, a Yasuhiro Ikeda a
Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA a; Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA b

ABSTRACT
Intron-containing mRNAs are subject to restricted nuclear export in higher eukaryotes. Retroviral replication requires the nuclear-cytoplasmic transport of both spliced and unspliced RNA transcripts, and RNA export mechanisms of gammaretroviruses are poorly characterized. Here, we report the involvement of the nuclear export receptor NXF1/TAP in the nuclear export of gammaretroviral RNA transcripts. We identified a conserved cis-acting element in the pol gene of gammaretroviruses, including murine leukemia virus (MLV) and xenotropic murine leukemia virus (XMRV), named the CAE (cytoplasmic accumulation element). The CAE enhanced the cytoplasmic accumulation of viral RNA transcripts and the expression of viral proteins without significantly affecting the stability, splicing, or translation efficiency of the transcripts. Insertion of the CAE sequence mediated the cytoplasmic accumulation of gammaretroviral transcripts in an NXF1-dependent manner. Disruption of NXF1 expression impaired cytoplasmic accumulations of both spliced and unspliced RNA transcripts of XMRV and MLV, resulting in their nuclear retention or degradation. Thus, our results demonstrate that gammaretroviruses use NXF1 for the cytoplasmic accumulation of both spliced and nonspliced viral RNA transcripts.

IMPORTANCE
Murine leukemia virus (MLV) has been studied as one of the classic models of retrovirology. Although unspliced host messenger RNAs are rarely exported from the nucleus, MLV actively exports unspliced viral RNAs to the cytoplasm. Despite extensive studies, how MLV achieves this difficult task has remained a mystery. Here, we have studied the RNA export mechanism of MLV and found that (i) the genome contains a sequence which supports the efficient nuclear export of viral RNAs, (ii) the cellular factor NXF1 is involved in the nuclear export of both spliced and unspliced viral RNAs, and, finally, (iii) depletion of NXF1 results in nuclear retention or degradation of viral RNAs. Our study provides a novel insight into MLV nuclear export.
maretroviruses, their RNA export mechanisms are poorly understood. The gammaretrovirus proviral DNA consists of three main open reading frames (ORFs), gag, pol, and env, flanked by two long terminal repeats (LTRs), which are further divided into three regions, U3, R, and U5. The 5’ untranslated region (UTR) of viral RNA contains cis-acting elements essential for retroviral replication, including the primer-binding site (PBS), the major splice donor (SD), and the packaging signals. The Gag and Pol proteins are expressed from the unspliced transcripts. For expression of the viral gag and pol coding region, the Gag- and Pol-coding region is removed as an intron by a single splice event between the SD site and the splice acceptor (SA) site located upstream of the Env start codon. Previous studies have demonstrated that the sequences upstream of the 5’ major SD site determine the splicing efficiency of MLV transcripts (20, 21). However, the nuclear export pathway(s) and the mechanism controlling the cytoplasmic accumulation of viral transcripts remain elusive. Here, we demonstrate the use of NXF1 for the cytoplasmic accumulation of both spliced and unspliced gammaretroviral transcripts.

MATERIALS AND METHODS

Plasmid constructs. A plasmid encoding xenotropic murine leukemia virus (XMRV) Env (pX-Env) was described previously (22). The PCR primer set (pX-Env+CAE; see Table S1 in the supplemental material) was designed to amplify the target region of pXMRV. The resulting PCR fragment was inserted into pUb6. For the generation of HIV-1 Gag-expressing plasmid pHG, the HIV-1 gag ORF was amplified using HIV-1 pNL4.3 as a template and inserted into the BamHI and EcoRI sites of pcDNA3.1 (+) (Invitrogen). The RRE sequence from HIV-1 NL4.3, the CAG promoter, and the packaging signals were inserted into the pAMS (AM is a fusion of amphotropic murine leukemia virus gag-pol-env with the MoMLV gag region) (23), and the RD114 CAE-like sequence from pHG-RD-LF was amplified by using specific primers listed in Table S1 in the supplemental material and inserted into the EcoRI and NotI sites of pHG. Similarly, HIV-1 Gag expression plasmids with shorter CAE regions, including pHG+CAE(1-70), pHG+CAE(33-113), and pHG+CAE(77-146), were generated. All the deletion mutants of CAE in pHG-CAE were generated by using the QuikChange II site-directed mutagenesis kit (Stratagene) and oligonucleotides listed in Table S1 in the supplemental material. For the expression of a small interfering RNA (siRNA)-resistant NXF1 mutant, three silent mutations (GAATACTGATC [siRNA escape mutant]; nucleotides subjected to mutagenesis are underlined) were introduced into the siRNA-targeted region AGGATACTGATC [wild type (WT)] of pCMV-SPORT6-NXF1 (Open Biosystems). The ORFs of WT NXF1 or the escape mutants of NXF1 were then inserted into a lentiviral plasmid (pHRSINCSGW_PGRPuro) to create stably NXF1-expressing cells.

Cell lines and transfection. 293T and TE671 cells were cultured in Dulbecco’s modified Eagle’s medium with 10% fetal bovine serum at 37°C immersed in autoclaved 20% CO2. Persistently XMRV-producing 22Rv1 cells were purchased at 60 h posttransfection. For the mRNA stability assay, 293T cells were transfected with 0.5 μg of RNA with 5% CO2. Persistently XMRV-producing 22Rv1 cells were purchased at 60 h posttransfection. For the mRNA stability assay, 293T cells were transfected with 0.5 μg of RNA with TransIT-mRNA reagent (Mirus). At 48 h posttransfection, nuclear and cytoplasmic cell lysates were harvested by using a Paris kit (Ambion), and protein expression was analyzed by Western blotting.

RNA pulldown assay. An RNA pulldown assay was performed as described previously by Tsai et al. (24). With modifications. Briefly, 60-nucleotide (nt) biotin-conjugated CAE RNAs from XMRV and MLV as well as 20 nt of unlabeled competitor RNA (see Table S1 in the supplemental material) were purchased from IDT. For each reaction, 5 nM the biotin-conjugated RNA and 500 nM competitor RNA were used. They were first heated at 90°C for 2 min and then kept on ice for 2 min. After the addition of RNA structure buffer (10 mM Tris [pH 7.1], 0.1 M KCl, 10 mM MgCl2), the RNAs were incubated at room temperature for 20 min to form proper secondary structures. Cytoplasmic and nuclear fractions were prepared by using the Paris kit (Ambion). Folded RNAs were mixed with 1 mg of 293T cell lysate and incubated at room temperature for 1 h. Dynabeads M-270 streptavidin (STA) (Invitrogen) were then added to each reaction mixture and incubated at room temperature for 1 h. Beads were washed five times with 1× wash buffer (2× wash buffer is 10 mM Tris–HCl [pH 7.5], 1 mM EDTA, and 2.0 M NaCl) and subjected to SDS-PAGE. Rabbit anti-NXF1 antibody (Sigma) and rabbit anti-exportin 1/Crm1 (Sigma) were used for Western blot analysis.

Western blotting. Protein samples in Laemmli sample buffer supplemented with β-mercaptoethanol were boiled at 95°C for 5 min, subjected to 4 to 15% SDS-PAGE (Bio-Rad), and transferred onto a polyvinylidene difluoride membrane. Membranes were blocked in 5% milk–phosphate-buffered saline–0.2% Tween 20 and washed with primary and secondary antibodies (rabbit anti-CSE1L [Novus], rabbit anti-importin 13 [Novus], mouse anti-β-actin [Sigma], mouse anti-glyceroldehyde-3-phosphate dehydrogenase [GAPDH] [Sigma], goat anti-MLV [ATCC], mouse anti-14-3-3ε [E-11] [Santa Cruz Biotech], rabbit anti-eIF1A [Abcam], and sheep anti-human importin alpha 2 [PKR2A [R&D]], followed by chemiluminescent detection using the ECL Western blotting substrate (Pierce). Protein expression was quantified by densitometric analysis (http://rswebb.nih.gov/ij/) according to ImageJ guidelines. Student’s t test was performed for statistical analysis.

RT-qPCR. Nuclear and cytoplasmic RNA samples were extracted by using a Paris kit (Ambion) according to the manufacturer’s protocol. The RNA concentrations were determined by using a NanoDrop spectrophotometer (Thermo Scientific), and cDNA was synthesized by using RNA-to-cDNA EcoDry Premix (Clontech). The real-time qPCR assay was performed as described previously (25, 26).

Northern blotting. Probes were generated by using a NorthSouth Random Prime DNA biotinylation kit (Pierce). The primers are listed in Table S1 in the supplemental material. Two to five micrograms of cytoplasmic and nuclear RNA samples was mixed with 10 μl deionized formamide (Millipore), 4.0 μl formaldehyde (Fisher Scientific), 2.0 μl of 10× morpholinepropanesulfonic acid (MOPS) buffer (Fisher Scientific), 2.0 μl of 0.4 mg/ml ethidium bromide, and 1.0 μl of 0.2% bromphenol blue dye mix (0.2% bromphenol blue, 10 mM EDTA, and 50% glycerol in diethyl pyrocarbonate [DEPC]-treated water). RNAs were heated at 65°C for 10 min before loading onto a 1.2% formaldehyde agarose gel. After electrophoresis, the gels were rinsed with autoclaved water for 15 min and immersed in autoclaved 20× SSC (1× SSC is 0.15 M NaCl plus 0.015 M
sodium citrate) for 1 h with gentle shaking. RNA was then transferred onto nylon membranes (Pierce) overnight and fixed by UV cross-linking. Probe hybridization and signal detection were performed according to the protocol provided with the North2South chemiluminescent hybridization and detection kit (Pierce).

RNA sequencing (RNA-Seq). Nuclear and cytoplasmic RNAs were isolated from MLV-infected TE671 or pXMRV-transfected 293T cells 2 days after transfection of the NXF1 siRNA or a control siRNA. The processing of the mRNA data was performed by using MAP-RSeq v. 1.2.1. MAP-RSeq consists of the following steps: alignment, quality control, obtaining genomic features per sample, and, finally, summarizing the data across samples. The pipeline provides detailed quality control data to estimate the distance between paired-end reads, evaluate the sequencing depth for alternate splicing analysis, determine the rate of duplicate reads, and evaluate the coverage of reads across genes using RSeQC v 2.3.2 software (27). Paired-end reads were aligned with TopHat 2.0.6 (28) against the hg19 genome build by using the bowtie1 aligner option (29). Gene counts were generated by using HTseq software (http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html), and gene annotation files were obtained from Illumina (http://cufflinks.cbcb.umd.edu/igenomes.html). Paired-end reads were also mapped to the MLV sequence (GenBank accession number AF010170.1) by using BWA (30), and coverage across the viral genes was calculated by using GATK Diagnostic Targets v 2.4-3 (31). Differential expression analysis was performed by using edger v 2.6.2 (32), using triplicates for each group analyzed. The gene expression of viral reads obtained from cells treated with siRNA targeting NXF1 was normalized to the read counts obtained from cells treated with the siRNA control. Increases and decreases in the viral gene expression level were indicated as percentages. The false discovery rate (FDR) was fixed to 0.1, and significant changes (n = 3) in viral gene expression levels between control and NXF1-specific siRNAs, or with overexpression of an NXF1 escape mutant, were determined.

RNA immunoprecipitation. Nuclear lysate was isolated from TE671 cells infected with MLV by using buffers supplied with the Paris kit (Ambion). Chromatin was sheared by passing through a syringe needle five times, and the nuclear membrane and debris were pelleted by centrifugation at 13,000 rpm for 10 min. Antibody (5 µg) was added to 10 mg of supernatant and incubated for 2 h at 4°C, Protein A-Sepharose CL-4B (GE Healthcare) was then added to the mixture, and the mixture was incubated again for 1 h at 4°C. Sepharose beads were pelleted at 2,500 x g for 30 s and washed with RNA immunoprecipitation (RIP) buffer (150 mM KCl, 25 mM Tris [pH 7.4], 5 mM EDTA, 0.5 mM dithiothreitol [DTT], 0.5% NP-40, 100 U/ml RNase inhibitor, and protease inhibitor) five times, followed by one wash in phosphate-buffered saline. RNA was extracted by using the RNasey Plus minikit (Qiagen), and cDNA was synthesized (Clontech) for PCR. Primers for RIP are listed in Table S1 in the supplemental material as RIP AM-MLV gag and RIP AM-MLV env.

RESULTS

Identification of a novel cis-acting element facilitating efficient XMRV Env expression. It is known that the expression of MLV envelope proteins from heterologous vectors is inefficient. We found this to be the case with the xenotropic MLV XMRV (22). Insertion of the 146-nt sequence termed the CAE (cytoplasmic accumulation element) (Fig. 1A), which is at the end of the pol gene, strongly enhanced the expression of Env to levels comparable to that of an infectious molecular clone, pXMRV (Fig. 1B). In this 146-nt CAE sequence, we found an in-frame CTG codon, upstream of the putative XMRV Env starting ATG codon, as well as the splice acceptor site for the env transcripts. Several retrovirus proteins, such as MLV glycosylated Gag and equine infectious anemia virus (EIAV) Tat, are translated from a CTG initiation codon (33, 34). To rule out a possible role in the in-frame CTG site in the CAE-mediated increase in the XMRV Env expression level, we introduced mutations into the CTG site (pX-Env+CAEΔCTG) or the putative ATG start codon (pX-Env+CAEΔATG). We also generated a mutant with a disruption in the splice acceptor site (pX-Env+CAEΔASA). Our data showed no involvement of CTG and the splice acceptor sites in CAE function (Fig. 1B). In addition, the use of the CAE-containing XMRV Env expression construct also increased XMRV Env-pseudotyped gammaretroviral and lentiviral vector titers (Fig. 1C).

The CAE mediates the cytoplasmic accumulation of XMRV env transcripts without affecting the splicing, stability, or translational efficiency of viral transcripts. To assess the potential effect of the CAE insertion on the splicing of viral transcripts, we harvested cytoplasmic RNAs from 293T cells transfected with pX-Env or pX-Env+CAE and analyzed the splicing patterns of the env transcripts by Northern blotting. Although the introduction of the 146-nt CAE sequence increased the level of env transcripts, no notable change in the splicing patterns of env was observed (Fig. 2A). We then assessed the influence of the CAE addition on the stability of the viral transcripts. Actinomycin D-mediated pulse-chase stability assays demonstrated that the mRNA half-life was estimated to be 12.0 or 13.95 h in the absence or presence of the CAE sequence, respectively, which was not statistically significant (Fig. 2B). We also found that the introduction of the CAE had no effect on the stability of viral transcripts when mRNAs were transcribed in vitro (data not shown). To assess the influence of the CAE addition on the translation of viral transcripts, the in vitro-transcribed env mRNAs were transfected into 293T cells, and the levels of XMRV Env expression were assessed by Western blotting. As shown in Fig. 2C, the CAE had no effect on translational efficiency. Finally, we compared the abundances of nuclear and cytoplasmic env transcripts between the two constructs. The insertion of the CAE sequence did not affect the nuclear levels of viral transcripts but increased the cytoplasmic levels of Env-encoding transcripts approximately 15-fold at 8 h posttransfection (Fig. 2D). These data demonstrated that the CAE sequence contains a cis-acting element that enhances the cytoplasmic accumulation of viral transcripts without affecting their splicing, stability, or translational efficiency.

The CAE sequence supports Rev-independent expression of HIV-1 Gag. To confirm the putative nuclear export activity, we introduced the XMRV CAE sequence into a Rev-dependent HIV Gag expression construct, pHG (Fig. 3A). As expected, Rev-independent HIV Gag expression was inefficient in the absence of Rev, but remarkably, insertion of the CAE sequence significantly increased Gag expression levels in a Rev-independent manner (Fig. 3B). trans-complementation by Rev transfection increased the Rev/RRE-dependent Gag expression level but not the CAE-mediated Gag expression level (Fig. 3B). Our data therefore suggest that the CAE can compensate for Rev/RRE-mediated nuclear export of HIV transcripts. Deletion analysis of CAE showed that the insertion of the first 70 nt, pHG + CAE (1-70), mediated a similar enhancement (Fig. 3C).

Further mapping identified an essential 9-nt core CAE region, which is highly conserved among gammaretroviruses. Related gammaretroviruses, including MLV strains, gibbon ape leukemia virus, feline leukemia virus, and feline endogenous virus RD114, have conserved CAE-like sequences (70 nt) (Fig. 4A). The introduction of the CAE-like sequences from amphotropic MLV or RD114 also rescued Rev-independent HIV Gag expression (Fig. 4B). To further map the region essential for CAE activity, we gen-
generated a series of deletion mutants based on the pHG-CAE(1-70) construct (pHG-CAE/H90041, -H90042, -H90043, and -H90044) (Fig. 4A). Introduction of the deletion into the highly conserved region (pHG-CAE/H90042) abolished CAE function (Fig. 4C).

RNA secondary structure is essential for posttranscriptional control for simian retrovirus (35,36) and recruits cellular proteins for nuclear export of the transcripts (16). RNAfold software (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) was therefore used to predict two potential forms of the CAE sequences with stem-loop structures (Fig. 4D). Based on the predictions, we generated pHG-CAE-based mutants with deletions in the stem or the whole loop regions (Fig. 4D). As shown in Fig. 4E, deletion of the individual stem or loop sequences did not affect CAE function. Based on these results, we tested a pHG+CAE mutant with a deletion in the conserved GGAAAGGAC sequence, which demonstrated that the 9-nt GGAAAGGAC sequence was essential for CAE activity (Fig. 4F). The introduction of the GGAAAGGAC sequence alone failed to rescue HIV-1 Gag expression, indicating that this sequence is essential but not sufficient to mediate Rev-independent HIV-1 Gag expression (Fig. 4F).

NXF1 is required for CAE-mediated cytoplasmic accumulation of viral transcripts and expression of the viral Env protein. We reasoned that the CAE interacts with a nuclear export factor to facilitate efficient cytoplasmic accumulation of viral transcripts. Our attempts to identify CAE-interacting host factors by pulling down the biotin-labeled CAE sequence yielded several candidate proteins. However, disruption of these proteins failed to reduce CAE function (not shown). We therefore assessed the effects of inhibiting major importin/karyopherin-β family proteins (37–49) on CAE function. We first tested the effect of leptomycin B (LMB), which inhibits nuclear export through the CRM1 pathway. As expected, LMB treatment strongly reduced the expression of Rev-dependent HIV-1 Gag (Fig. 5A). In contrast, LMB did not affect the expression of the XMRV Env and Gag proteins (Fig. 5B).

For screening of major importin/karyopherins and the major nucleocytoplasmic transport receptor NXF1, we used specific siRNAs. To minimize indirect effects induced by sustained ablation of individual nuclear export pathways, we assessed the effects of siRNA treatments 48 h after siRNA transfection. We first assessed functional controls for the downregulated karyopherins. Disruption of CRM1 (XPO1), NXF1, exportin 7 (XPO7), importin 13 (IPO13), and exportin 2 (XPO2) reduced Rev-dependent HIV-1 Gag expression (Fig. 5C), MPMV CTE-mediated HIV-1 Gag expression (Fig. 5D), nuclear export of 14-3-3 (Fig. 5E), nuclear import of eIF1A (Fig. 5F), and nuclear export of IPO-α (Fig. 5G), respectively. We then examined the effects of ablation of
CRM1 (XPO1), XPO2, IPO13, NXF1, and XPO7 expression on CAE-mediated XMRV Env expression. As shown in Fig. 5H, only NXF1 knockdown impaired Env expression in pX-Env/H11001 CAE-transfected 293T cells and in persistently XMRV-infected 22Rv1 cells. No notable effect was observed with the other siRNA treatments. Silencing of XPOT, XPO4, XPO5, and XPO6 expression showed no effect on CAE-mediated XMRV Env expression (data not shown). Real-time PCR analysis further revealed that NXF1 depletion significantly decreased the cytoplasmic levels of env transcripts of pX-Env/H11001 CAE but not those of pX-Env (Fig. 5I), which suggested the involvement of NXF1 in the CAE-mediated nuclear export of XMRV env transcripts.

To assess the interaction between NXF1 and the CAE sequence, we performed an RNA pulldown assay using a biotin-labeled, 60-nt XMRV CAE RNA sequence and streptavidin (STA) beads. Western blot analysis with anti-NXF1 antibody detected NXF1 in the XMRV CAE(1-60) pulldown with cell lysates (Fig. 5J). Another major receptor, CRM1, did not show an interaction with CAE (Fig. 5I), which is consistent with the results shown in Fig. 5B. Similar results were also observed when a biotin-labeled 60-nt CAE-like RNA from amphotropic MLV was used as a probe (Fig. 5K). The addition of unlabeled competitor RNA (20-nt sequence from the Δ2 region) (Fig. 4A) containing the 9-nt CAE core sequence (GGAAAGGAC) strongly prevented NXF1 pulldown by a
These observations confirmed the interaction between NXF1 and gammaretroviral CAE sequences and the importance of the 9-nt core sequence in this interaction.

NXF1 is required for efficient nuclear export of unspliced gammaretroviral transcripts. Short-term disruption of NXF1 expression did not strongly affect the levels of accumulated XMRV Gag polyproteins in persistently XMRV-infected 22Rv1 cells (Fig. 5H). However, we noted that disruption of NXF1 impaired the accumulation of XMRV Gag proteins in 293T cells transiently transfected with an infectious molecular clone of XMRV. Transfection of the NXF1 siRNA for 48 h significantly reduced the levels of Env and Gag p65 and p30 proteins without affecting the levels of endogenously expressed housekeeping genes (Fig. 6A). When quantified, transfection of the NXF1 siRNA reduced the levels of Gag and Env 3.3- and 67-fold, respectively \((n = 3) \) \(P < 0.002\) and \(P < 0.001\), respectively. Real-time RT-PCR analysis also demonstrated that NXF1 depletion resulted in significant nuclear accumulation and reduced cytoplasmic abundances of pol and env transcripts (Fig. 6B). These data indicate that NXF1 plays a critical role in the nuclear export of both spliced and unspliced viral transcripts.

FIG 4 Mapping analysis of the 70-nt CAE. (A) Gammaretroviral CAE-like sequences were aligned to the CAE of XMRV. Series of deletion mutants (CAEΔ1 to CAEΔ4) are also indicated at the bottom. Gray bars correspond to the XMRV CAE sequences inserted into the pHG plasmid. GenBank accession numbers are indicated in parentheses. GaLV, gibbon ape leukemia virus; FeLV, feline leukemia virus. (B) CAE-like sequences (70 nt) from MLV and RD114 were inserted into pHG, and the effect on HIV-1 Gag expression was compared to those of pHG and pHG + CAE(1-70) by Western blotting. (C) Western blotting was performed to determine Rev-independent HIV-1 Gag expression by pHG + CAE(1-70)-derived deletion mutants (CAEΔ1 to CAEΔ4, shown in panel A). 293T cells were transfected with the indicated plasmids. The relative band density was normalized to the HIV-1 Gag signal, with pHG set to 1. Error bars represent standard deviations from three independent experiments, with statistical significance determined by a two-tailed Student t test \((\times, P < 0.05; \times\times, P < 0.01; \times\times\times, P < 0.001)\). (D) RNAfold software (http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi) was used to predict two potential secondary structures of the CAE sequence. The indicated stem regions (blue) or loop regions (red) were mutated or deleted, respectively. Loop regions 1 to 3 are also indicated in panel A. (E) Western blotting was performed to determine Rev-independent HIV-1 Gag expression by the pHG + CAE(1-70)-derived mutants (Δstem1 to -3 and Δloop1 to -3). 293T cells were transfected with the indicated plasmids, and the HIV Gag expression level was compared with that of pHG + CAE(1-70). β-Actin was stained as a loading control. (F) Western blotting of HIV-1 Gag expression with a 9-nt deletion or the insertion of the 9-nt minimum sequence \((+GGAAAGGAC)\). β-Actin was detected as a loading control. The minimum sequences are also indicated in panels A and D (green).
XMRV is recombinant between endogenous polytropic and xenotropic MLVs (50). To examine whether other mouse gammaretroviruses utilize a similar mechanism of RNA export, we examined the behavior of a chimeric AM-MLV, pAMS (ATCC 45167) (23). This virus has an amphotropic 4070A env gene in a Moloney MLV background, allowing AM-MLV replication in human cells. As shown in Fig. 6C, immunoprecipitation of NXF1 in persistently AM-MLV-infected TE671 cells, followed by RT-PCR, detected both spliced and unspliced MLV transcripts, suggesting an interaction of NXF1 with unspliced MLV transcripts.

FIG 5 NXF1 is required for CAE-mediated cytoplasmic accumulation of viral transcripts. (A) 293T cells were transfected with p8.91QV (HIV Gag-, Pol-, Rev-, Tat-, and RRE-containing plasmid). At 18 h posttransfection, cells were treated with leptomycin B (0 nM [−] or 20 nM [+], as indicated). At 24 h post-drug treatment, cells were harvested and subjected to Western blotting. (B) Same as panel A except that an infectious clone of XMRV (pXMRV) was used. (C to G) Functional controls for siRNAs used to block individual nuclear export pathways. (C) 293T cells were transfected with the indicated siRNAs and p8.91QV. Western blot analysis was performed to determine the expression levels of XPO1/CRM1 and CRM1- and Rev-dependent HIV Gag proteins. (D) Four copies of the MPMV CTE element were inserted into the pHG construct, resulting in pHG4CTE, as described previously by Swanson et al. (15). Western blotting was performed to verify the effects of NXF1-targeting siRNA on XPO1 expression and NXF1- and CTE-dependent HIV-1 Gag expression. (E to G) At 48 h posttransfection, the effects of siRNA-mediated disruption of XPO7, IPO13, and XPO2 (38, 39, 49) on the transport of known target proteins (14-3-3, elf1A, and IPO-α) were analyzed by either Western blotting (E and F) or immunohistochemistry (G) (71). DAPI, 4',6-diamidino-2-phenylindole. (H) Effects of depletion of the indicated karyopherin-α protein family or NXF1 on expression of XMRV proteins were analyzed by Western blotting (WB). 293T cells were transfected with siRNAs, followed by cotransfection with 0.4 μg of pX-Env+CAE and 0.2 μg of a plasmid expressing luciferase (as a transfection/toxicity control). Cells were harvested 48 h after siRNA transfection. Persistently XMRV-infected 22Rv1 cells were transfected with siRNAs and harvested 48 h later. Western blotting was performed by using goat anti-MLV antibody, mouse anti-β-actin as a loading control, and specific antibodies for the nuclear export proteins. Silencing of XPO7 was verified by RT-PCR, with GAPDH as a control. (I) Influence of NXF1 knockdown on the nuclear export of XMRV env transcripts. 293T cells were transfected with pX-Env and pX-Env+CAE (indicated as +CAE) as well as the indicated siRNAs. RT-qPCR was performed to quantify the levels of XMRV env transcripts in the nucleus and the cytoplasm. (J to L) Interaction of NXF1 and the CAE sequence was determined by an RNA pulldown assay. Nuclear (Nuc) or cytoplasmic (Cyto) cell extracts from TE671 cells were incubated with the biotin-labeled XMRV (J) or MLV (K and L) CAE RNA in the presence of competitor RNA (lane 5 in panel L). The CAE RNA was pulled down with streptavidin (STA)-conjugated magnetic beads, followed by Western blotting of copurified proteins using anti-NXF1 or anti-CRM1 antibody. The presence or absence of the biotin-conjugated CAE RNA, streptavidin, cell lysate, and unconjugated competitor RNA is shown as + or −, respectively.
scripts. Northern blot analysis demonstrated that siRNA-mediated NXF1 depletion for 48 h impaired the cytoplasmic accumulations of env and gag transcripts in AM-MLV-infected TE671 cells (Fig. 6D). Real-time PCR analysis also confirmed a significantly reduced cytoplasmic accumulation of spliced and unspliced MLV transcripts (Fig. 6E).

Minimal off-target or indirect effects of siRNA-mediated NXF1 depletion. To rule out potential off-target or toxic effects of the NXF1-specific siRNA, we generated a lentiviral vector expressing a siRNA-resistant NXF1 mutant, NXF1-Escape. We also generated a control lentivector expressing a wild-type NXF1 protein. Persistently AM-MLV-infected TE671 cells were stably transduced by the lentiviral vectors, resulting in cells overexpressing wild-type NXF1 or NXF1-Escape (AM-MLV-infected TE671 + NXF1-WT1 and -WT2 or -ESC1 and -ESC2, two biological replicates for the wild-type and NXF1-Escape constructs, respectively). Using these cells, we assessed the influence of NXF1 siRNA transfection. The introduction of the NXF1-Escape mutant, but not wild-type NXF1, resulted in the overexpression of siRNA-resistant NXF1, which rescued the defects in cytoplasmic accumulation of MLV transcripts upon depletion of NXF1 (Fig. 7A).

To assess the influence of siRNA-mediated NXF1 knockdown on viral and cellular transcripts, we also performed deep sequencing analysis of nuclear and cytoplasmic RNAs from AM-MLV-infected TE671 cells (AM-MLV-infected TE671 cells treated with the control siRNA or the NXF1 siRNA and AM-MLV-infected TE671 cells stably overexpressing NXF1-Escape; n = 3 per each treatment) (Fig. 7B). The NXF1 siRNA treatment demonstrated significantly reduced nuclear and cytoplasmic NXF1 transcript levels in the nucleus and the cytoplasm upon siRNA treatment of AM-MLV-infected TE671 cells. Average unspliced and spliced viral RNA copy numbers (per μg of RNA) from five independent experiments are shown. Error bars represent standard deviations (* P < 0.05 by a two-tailed Student t test).
The MLV leader sequence modulates the splicing efficiency of viral transcripts, and NXF1 mediates the cytoplasmic accumulation of spliced and unspliced MLV transcripts. We also assessed the influence of NXF1 depletion on transient MLV gene expression in 293T cells transiently transfected with an infectious molecular clone of AM-MLV, pAMS. Disruption of NXF1 expression reduced the levels of MLV Gag and Env expression (Fig. 8A) as well as the cytoplasmic levels of MLV transcripts (Fig. 8B). Unlike TE671 cells, disruption of NXF1 expression in 293T cells resulted in extensive degradation of the MLV transcripts in the nuclei (Fig. 8B), whereas full-exome sequencing analysis demonstrated little effect of NXF1 depletion on the cellular RNA reads in 293T cells (data not shown).

Previous studies have demonstrated the importance of the 5' UTR for the alternative splicing of MLV transcripts; the PBS activates splicing, while flanking sequences downstream of the PBS (3' PBS) are inhibitory (21). We generated the MLV splicing mutants pAMSΔPBS and pAMSΔ3'PBS based on the pAMS plasmid (Fig. 8C). Transfection of pAMSΔPBS and pAMSΔ3'PBS showed reduced and accelerated splicing patterns in the nuclei, respectively (Fig. 8C). When knockdown effects of NXF1 were examined by using these constructs, depletion of NXF1 arrested the export of spliced and unspliced viral transcripts, resulting in an accumulation of degraded viral transcripts in the nucleus (Fig. 8D). The nuclear degradation of viral transcripts was unique to the NXF1-depleted cells; no notable degradation of viral transcripts was observed with control siRNA or siRNA against a recently identified adaptor protein, germinal center-associated nuclear protein (GANP) (51) (Fig. 8D, right). These observations confirmed that both spliced and unspliced MLV transcripts were exported through the NXF1 pathway. Furthermore, our data suggest that NXF1 also stabilizes viral RNA in the nucleus.

DISCUSSION

In this study, we examined the mechanisms underlying the nuclear export of gammaretrovirus RNA transcripts. Our results demonstrate that gammaretroviruses have a conserved cis-acting element, the CAE, in the pol gene, which enhances the cytoplasmic accumulation of viral transcripts and expression of viral proteins in an NXF1-dependent manner. NXF1 also interacted with intron-containing, unspliced transcripts of gammaretroviruses. Disruption of NXF1 expression impaired cytoplasmic accumulations of both spliced and unspliced transcripts of XMRV and MLV, resulting in their nuclear retention or degradation. Based on these observations, we concluded that gammaretroviruses use NXF1 for the cytoplasmic accumulation of spliced and unspliced viral transcripts.

The env leader sequences of Moloney MLV (52) and murine intracisternal A-type particle (IAP) MIA14 (53) have been shown to enhance the cytoplasmic accumulation of viral transcripts. The insertion of the IAP element can replace the function of the CTE or RRE in a Rev-independent HIV Gag expression system (53). Here, we demonstrated that the CAE sequence enhanced the cytoplasmic accumulation of XMRV env transcripts (Fig. 2D) without affecting the splicing patterns (Fig. 2A), the half-life of viral transcripts (Fig. 2B), or the translation efficiency of the transcripts (Fig. 2C). The introduction of the CAE sequence rescued Rev-independent HIV-1 Gag expression (Fig. 3). Further mapping...
FIG 8 The MLV leader sequence modulates the splicing efficiency of viral transcripts, and NXF1 mediates the cytoplasmic accumulation of spliced and unspliced MLV transcripts. (A) Western blot analysis was performed to determine the influence of NXF1 disruption on transient MLV protein expression in 293T cells. Cells were transfected with the indicated siRNAs, followed by transfection with 0.4 μg of plasmid. Cells were harvested 48 h after siRNA transfection for protein expression analysis using the indicated antibodies. (B) Northern blotting of MLV transcripts in 293T cells. Cells were transfected with pAMS and treated with the indicated siRNA. Viral transcripts and rRNAs from nuclear and cytoplasmic fractions are indicated as loading controls. Note the extensive degradation of viral transcripts in the nucleus upon NXF1 depletion. (C) Schematic representation of the 5’ LTR region of pAMS. In the PBS deletion mutant pAMSΔPBS, the PBS
identified the 9-nt core CAE sequence (GGAAAGGAC) essential for CAE function (Fig. 4F). Our observations indicate that the region downstream of the env splice acceptor site in gammaretroviruses plays an important role in the nucleocytoplasmic transport of viral transcripts.

NXF1 is recruited to fully spliced mRNAs through interactions with various adaptor proteins, such as UAP56, Aly/REF, and a transcription/export (TREX) complex, to facilitate the export of different mRNA classes (51, 54). Although NXF1 binds RNA through its N-terminal RNA-binding domain (RBD), the NXF1 RBD has no clear sequence specificity and shows promiscuous interactions with a variety of RNA substrates (55, 56). A recent study suggests that NXF1 uses an intramolecular interaction to block its RNA-binding activity, which is released by a conformational change upon contact with Aly/REF and a TREX subunit (57). In contrast, the modes of NXF1 interaction with viral RNAs are different. For instance, influenza virus RNAs directly bind NXF1 (58). Similarly, the CTEs of betaretroviruses directly bind NXF1 to facilitate the export of intron-containing viral transcripts (59, 60). The NXF1-mediated recognition of the CTE RNA is highly sequence specific. The RBD and leucine-rich repeat motifs of NXF1 bind to one symmetrical half of the CTE RNA with L-shaped conformations to facilitate export (61), while the introduction of point mutations into the CTE sequence abolishes the interaction (61, 62). Here, we demonstrated that a short-term, modest NXF1 disruption significantly reduced cytoplasmic, but not nuclear, levels of MLV transcripts (Fig. 6E and 7B). Notably, the overexpression of siRNA-resistant NXF1 significantly enhanced cytoplasmic accumulations of MLV transcripts (Fig. 7B) without significantly affecting other cellular transcript reads (not shown). These observations suggest that the cytoplasmic accumulation of MLV transcripts requires higher levels of NXF1 than cellular transcripts. The higher NXF1 dependency may be due to the differences in the use of NXF1 adaptor proteins, such as Aly/REF, between gammaretroviral and cellular transcripts. Because the comparison of the CAE sequence with the CTEs showed no conserved sequence, it currently remains to be determined if the CAEs play precisely the same role as CTEs. Our preliminary studies found no evidence of a direct interaction between the CAE sequence and NXF1. However, this experiment is not straightforward, as NXF1 likely functions as a heterodimer with NXT1. Therefore, we are currently examining the involvement of adaptor proteins and NXT1 in the CAE-NXF1 interaction.

Intron-containing cellular mRNAs are subject to restricted nuclear export in higher eukaryotes (63). Previous studies have demonstrated that modulation of the viral 5’ leader sequence affects the cytoplasmic accumulation of spliced and unspliced MLV transcripts. For instance, deletion of the first 28 nt of the R region is critical for the cytoplasmic level of unspliced full-length viral transcripts (20, 64), while deletions in the PBS sequence also modulate the balance between unspliced and spliced MLV transcripts (21). We generated MLV mutants with the same mutations as those reported previously by Kraunus et al. (21) and confirmed that the deletions of the PBS or the region between the PBS and SD site reduced or increased the levels of spliced transcripts in the nucleus. Nevertheless, disruption of NXF1 blocked the cytoplasmic accumulations of spliced and unspliced gammaretroviral transcripts from these mutants. These observations indicate that MLV uses the sequences upstream of the 5’ major SD site to control the cytoplasmic accumulation of the intron-containing viral transcripts, primarily through modulation of the splicing efficiency but not through utilization of different nuclear export pathways. Given that the upstream splice donor and downstream splice acceptor regions are targeted by cellular splicing machinery, it may not be surprising that both the viral 5’ leader sequence, located immediately upstream of the SD site, and the CAE sequence, located downstream of the SA site, play critical roles in regulating the splicing and export of MLV transcripts.

NXF1 is implicated as a factor licensing the nuclear export of spliced mRNAs (65) as well as unspliced mRNAs (66). In 293T cells, NXF1 depletion not only blocked the cytoplasmic accumulation of gammaretroviral transcripts but also induced notable intranuclear degradation of viral transcripts (Fig. 8B), suggesting that NXF1 binding protects MLV transcripts from degradation in the nucleus. Since recruitment of RNA-binding proteins protects mRNA from degradation by the nuclear RNA surveillance machinery, such as the nuclear exosome (67), NXF1 may play a role in determining the fate of gammaretroviral transcripts for “protection and export” or “degradation,” thereby linking RNA export and surveillance. In this context, it is also notable that NXF1 depletion increased the cytoplasmic accumulation of aberrantly spliced transcripts (Fig. 8D). Since the same-sized bands were observed in cells transfected with a wild-type MLV clone without NXF1, these bands are likely splice intermediates or minor alternatively spliced transcripts, which can be produced even in normal 293T cells during wild-type MLV production. Nevertheless, NXF1 depletion potently inhibited nuclear export of properly spliced transcripts yet allowed the export of aberrantly spliced transcripts, implying NXF1’s role as a factor controlling the proper processing and export of MLV transcripts. It is plausible that disruption of NXF1 may lead to failed RNA surveillance, which accelerates nuclear export of aberrantly processed transcripts through an NXF1-independent pathway.

A potential issue with the use of RNA interference (RNAi)-mediated NXF1 disruption is the indirect effects induced by sustained NXF1 disruption. Transfection of an NXF1 siRNA can reduce (i) NXF1 transcript levels, (ii) NXF1 protein levels, (iii) nuclear export of NXF1-dependent viral/cellular mRNAs, and, ultimately, (iv) protein levels of NXF1-dependent viral/cellular factors, leading to nonspecific indirect effects. To minimize this, we determined the influence of NXF1 disruption 48 h after siRNA transfection. At 48 h, we observed little effect on cellular protein

region (nt positions 737 to 754, based on GenBank accession number AP010170) was deleted. In the pAMSΔ3′PBS construct, the sequence immediately downstream of the PBS (nt positions 755 to 773) was deleted. After Northern blot analysis in 293T cells, the intensity of the unspliced and spliced bands was quantified by using ImageJ software, and the ratios of spliced/unspliced transcripts were determined. The level of unspliced RNA was set to 1. Ratios of unspliced to spliced transcripts were 1.00.24 for pAMS (nuclear), 1.0.9 for pAMS (cytoplasmic), 1.00.012 for pAMSΔPBS (nuclear), 1.00.0167 for pAMSΔPBS (cytoplasmic), 1.0.3 for pAMSΔ3′PBS (nuclear), and 1.6 for pAMSΔ3′PBS (cytoplasmic). Error bars represent standard errors of two independent experiments. (D) Northern blot analysis of MLV transcripts in 293T cells transfected with pAMS, pAMSΔPBS, or pAMSΔ3′PBS, with or without treatment with NXF1- or GANP-targeting siRNAs. Agarose gel images of ethidium bromide-stained RNAs, including 45S, 32S, and 20S in the nucleus and 28S and 18S in the cytoplasm, are also shown. Silencing of GANP was verified by RT-PCR with GAPDH as the internal control.

April 2014 Volume 88 Number 8 jvi.asm.org 4079
levels, including beta-actin (Fig. 5H), as well as accumulated viral Gag polyproteins (Fig. 5H). Similar “short-term NXF1 disruption” protocols have been used to study the contribution of NXF1 to the nuclear export of cellular and viral transcripts (57, 58, 68, 69). Our full-exome sequencing study also demonstrated that transfection of the NXF1 siRNA for 48 h reduced cytoplasmic NXF1 transcript levels by 75% (Fig. 7B). This modest NXF1 disruption did not significantly affect the cytoplasmic accumulations of the majority of cellular transcripts: only 121 genes out of 11,729 cellular genes showed >4-fold downregulation in the cytoplasm upon transfection of NXF1 siRNA. These data verified that our NXF1 disruption experiments had minimal indirect effects.

Transfection of in vitro-translated mRNAs has been widely used to assess the stability or translational capacity of mutated mRNAs in the cytoplasm. However, RNA export is often coupled to translation (70), and therefore, it remains possible that the CAE mRNAs in the cytoplasm. However, RNA export is often coupled to translation (70), and therefore, it remains possible that the CAE sequence also influences translation efficiency.

In summary, we demonstrate that MLV uses NXF1 for the nuclear export of both spliced and unspliced viral RNA transcripts. Unlike HIV-1, MLV regulates the cytoplasmic accumulation of intron-containing MLV transcripts primarily at the splicing step through leader sequence-mediated splicing modulation.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health (AI093186) and the Mayo Foundation (Y.I.).

The infectious molecular clone of XMRV, pVp62/pcDNA3.1(−), was a kind gift from Robert B. Silverman (Cleveland Clinic, OH). pHRS-INCGRG, PGRFuro was kindly provided by Paul Lehner (Cambridge Institute for Medical Research, United Kingdom). We thank Greg J. Towers (University College London, United Kingdom) and Blair L. Strang (St. George’s Medical School, University of London) for critical reading of the manuscript.

T.S. and Y.I. conceived of and designed the experiments. T.S., J.A.M., and J.M.T. performed the experiments. T.S. and Y.I. analyzed the data. T.S. and Y.I. wrote the paper. T.S., J.M.T., and Y.I. edited the manuscript.

We declare that we have no conflict of interest.

58. Johnson LA, Sandri-Goldin RM. 2009. Efficient nuclear export of herpes simplex virus 1 transcripts requires both RNA binding by ICP27 and