Complete Genome Sequence of *Klebsiella pneumoniae* Phage JD001

Zelin Cui, Wenbin Shen, Zheng Wang, Haotian Zhang, Rao Me, Yanchun Wang, Lingbin Zeng, Yongzhang Zhu, Jinhong Qin, Ping He, and Xiaokui Guo

Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, China

Klebsiella pneumoniae is a member of the family Enterobacteriaceae, opportunistic pathogens that are among the eight most prevalent infectious agents in hospitals. The emergence of multidrug-resistant strains of *K. pneumoniae* has become a public health problem globally. To develop an effective antimicrobial agent, we isolated a bacteriophage, named JD001, from seawater and sequenced its genome. Comparative genome analysis of phage JD001 with other *K. pneumoniae* bacteriophages revealed that phage JD001 has little similarity to previously published *K. pneumoniae* phages KP15, KP32, KP34, and phiKO2. Here we announce the complete genome sequence of JD001 and report major findings from the genomic analysis.

Klebsiella pneumoniae is an important opportunistic pathogen that causes hospital-acquired pneumonia, sepsis, and urinary tract infections. Multidrug resistance is emerging worldwide among *K. pneumoniae* strains at an alarming rate and raises the problem of antibiotic choice (2, 7). It sometimes causes severe infection, and some of the infectious diseases caused by antibiotic-resistant bacteria cannot be treated in time (5). The use of bacteriophages to treat some infectious diseases was tried once they were discovered (1, 6). To develop bacteriophage cocktails as an alternative biocontrol agent for *K. pneumoniae*, *K. pneumoniae* clinical isolates were used to isolate JD001, which was isolated from a seawater sample collected at an estuary of the East China Sea near Shanghai, China. It belongs to the *Myoviridae* family, according to the transmission electron microscopic image, and efficiently lyses *K. pneumoniae* strain JDM777, which was isolated in a hospital.

The bacteriophage was purified by discontinuous CsCl centrifugation, and phage genomic DNA was extracted by using the Aidlab kit (Aidlab Biotechnologies Co., Ltd.). It was sequenced by using the Roche 454 genome sequencer at the Chinese National Human Genome Center in Shanghai. The assembly of quality filtered reads was performed by using the platform the 454 Life Sciences Corporation provided, and the prediction of open reading frames (ORFs) and their confirmation were conducted by using GLIMMER (3) and GeneMark.hmm (9), respectively. Conserved protein domain analysis of predicted ORFs was also carried out by using the BLASTp nr database and InterProScan programs (10). tRNA was predicted by the use of tRNAscan-SE software (8).

The complete circular double-stranded DNA genome of *K. pneumoniae* phage JD001 showed a 48,814-bp length with a GC content of 48.53%. The genome sequences of JD001 had little similarity to those of previously published *K. pneumoniae* phages KP15, KP32, KP34, and phiKO2 (4). These genome data constitute an important resource for us to study and engineer phages or the lysozyme they encode to control specific bacterial species.

Nucleotide sequence accession number. The whole genome sequence of *K. pneumoniae* phage JD001 has been deposited in GenBank under accession no. JX866719.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China (grants 8126110321, 8120334, 81171587, 81271793, 30970125, 81200265, and 30900051), the National High Technology Research and Development Program of China (grant number 2011AA02A119), Youth Fund of Shanghai Health Bureau (grant number 2011Y168), the China Postdoctoral Sustentation Fund (grant number 2011M500605), and the National Key Program for Infectious Diseases of China (grant 2009ZX10004-712).

REFERENCES