Vertebrate positive-strand RNA viruses are known to remodel the endomembrane system of the host cell (for a review, see references 16 and 42). These membrane alterations are associated with the viral RNA replication complex, and the resulting organization has been given the name virus factory. Electron tomography has been used to generate three-dimensional images of virus-induced alterations (for a review, see reference 19). Analyses of coronavirus, dengue virus, and picornavirus factories (8, 27, 34, 58) have revealed a reticulovesicular/tubular network of modified endoplasmic reticulum (ER) that integrates convoluted membranes, numerous double-membrane vesicles (DMVs) that may be interconnected, and vesicle packets that apparently arise from the merging of DMVs. The biogenesis of these virus factories affects the function of the host secretory pathway by interacting with or interfering with cellular membrane trafficking proteins in the case of the Norwalk virus (50), foot-and-mouth disease virus (37), and poliovirus (6, 7). In the past, research on vertebrate virus infection suggests that the modifications of the host secretory pathway usually result from the action of one or two viral proteins (52, 60). Generally, these viral proteins have one or several transmembrane domains that consist of stretches of approximately 20 hydrophobic amino acid residues. They also possess other molecular determinants that interact with host components necessary for the subversion of the host secretory pathway (6, 7, 24, 37, 50).

Membrane rearrangements involving the ER have also been observed in virus-infected plant cells (for a review, see references 29 and 55). These virus-induced cellular alterations are required for viral genome replication or for virus cell-to-cell movement. The modifications generally involve the formation of spherules, vesicles, and/or multivesicular bodies, which may be bound by a double-layer membrane and are often connected by a narrow channel to the surrounding cytosol. However, there are fundamental differences in the endomembrane system between plant and animal cells. In animal cells, the ER is tightly associated with microtubules, and Golgi bodies are clustered at the microtubule-organizing centers (MTOCs) near the nucleus. In plant cells, the ER is associated with actin microfilaments, and no MTOCs have been found near the nuclei. Furthermore, Golgi stacks in plant cells are not clustered but are singly distributed throughout the cytoplasm and are in close association with highly dynamic interconnected ER tubules and actin tracks (9, 36, 39, 51). Plant cells are also characterized by the presence of plasmodesmata that provide cytoplasmic continuity between adjacent cells. These plasma membrane-lined channels contain ER-derived desmotubules and actin filaments and are used for virus cell-to-cell spread (for a review, see reference 44). These distinctive features have been thought to be an underlying reason that may explain the relationship between ER-associated virus replication centers and virus egress, which is exemplified by the observation that tobacco mosaic virus replication takes place in ER-derived compartments that move from cell to cell (26).

It has been shown that infection by tobacco etch virus (TEV) (genus Potyvirus) is associated with a vesiculation of the ER network into a series of discrete aggregated structures (48). The viral protein 6K2 of TEV is an integral membrane protein and is associated with the punctate structures reminiscent of the structures observed during viral infection (48). Wei and Wang (57) observed in Nicotiana benthamiana cells expressing only TEV 6K2 fused to the cyan fluorescent protein (CFP) the production of small punctae along with larger ring-like structures. The punctae localized at

Received 11 May 2012 Accepted 8 June 2012
Published ahead of print 20 June 2012
Address correspondence to Jean-François Laliberté, jean-francois.laliberte@iaf.inrs.ca.
Supplemental material for this article may be found at http://jvi.asm.org/.
Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JVI.01146-12
endoplasmic reticulum exit sites (ERES), and their formation depended on retrograde and anterograde transport in the ER-Golgi interface (33, 57). Expression of nonfunctional Sar1 and Arf1 mutants, which block the secretory pathway, affected virus yield (57), but the enzyme-linked immunosorbent assay (ELISA) used to measure virus production could not distinguish whether viral RNA synthesis or virus cell-to-cell movement was affected.

Ectopic expression of a single viral protein does not take into consideration the contribution of other viral proteins that are likely to affect the viral process under study. In order to investigate the action of 6K2 during infection, an infectious clone of turnip mosaic virus (TuMV) (genus Potyvirus) has been engineered to coproduce 6K2 as a fluorescent protein (15). The coding sequence of the fluorescent protein was fused with the gene encoding 6K2 and inserted between the P1- and HCPro-coding genes as an in-frame translational fusion containing flanking P1 and VPG-Pro cleavage site-coding sequences: 6K2-GFP (6K2 fused to green fluorescent protein [GFP])/6K2-mCherry is thus released when the polyprotein is processed during infection. Cytoplasmic fluorescent discrete protein structures were observed in infected N. benthamiana cells and contained double-stranded RNA (dsRNA) (a marker for viral RNA replication), the viral proteins VPG-Pro, RNA-dependent RNA polymerase, cytoplasmic inclusion protein (helical), and host translation factors (15, 17, 25, 53, 56). Similar to what had been noted with the ectopic expression of TEV 6K2, the TuMV-induced 6K2-tagged vesicles moved along microfilaments and the cortical ER (15) and were additionally associated with chloroplasts (56). Finally, larger irregularly shaped 6K2-tagged static structures were found in the midsection of the cell near the nucleus (15, 53). These last structures were not observed after ectopic expression of 6K2 only (33, 57).

The above studies focused mainly on the membrane origin and involvement of the secretory pathway and microfilaments on the formation of the 6K2-associated vesicular structures. In the present investigation, we looked at the impact TuMV infection has on the overall architecture and dynamics of the early secretory endomembranes. We found that TuMV infection was accompanied by modifications of the ER, COPII coatomers, and Golgi apparatus. We noted that there was an amalgamation of the ER and Golgi apparatus within a perinuclear globular structure, in addition to the generation of motile peripheral viral vesicles associated with the transvacuolar and cortical ER. Experiments with 6K2 fused to photoactivatable GFP (PAGFP) indicated that the peripheral vesicles were functionally linked to the perinuclear structure. The formation of the perinuclear structure was not dependent on an operational secretory pathway, while the functionality of the peripheral 6K2 vesicles and intercellular virus movement were.

Materials and Methods

Fluorescent proteins and molecular clones. TuMV infectious clones pCambiaTunos/6KGF and pCambiaTunos/6KmCherry were described previously (15, 53). The introduction of the 35S-GFP-HDEL gene cassette into pCambiaTunos/6KmCherry was done as follows. pBIN/20-ER-gk (41) was digested with AseI and ligated with similarly digested pCambiaTunos/6KmCherry. Kanamycin-resistant Escherichia coli colonies were screened for pCambiaTunos/6KmCherry/HDELGFP. To make yellow fluorescent protein (YFP)-Sec24, the gene coding for Sec24A (A3tg01700) was amplified from Arabidopsis thaliana Col-0 ecotype cDNA library with the following two primers: Sec24-Forward (GGGGACAACTTTACTTGACA AAAAGTTGGAATGGTACGGAAGATCGGGCG) and Sec24-Reverse (GGCGGCGGCAACACTTTGTACAAGAAAGTTGGAATTAGT TGTTGACACCTGGCCG). Amplified Sec24 was cloned into the pDONR222 vector by BP recombination (Gateway cloning). The cloned gene was sequenced and then subcloned into the Gateway compatible destination vector pEarlyGate104 (ABRC stock DB3-686) by LR recombination to yield YFP-Sec24. 6K2 was fused to photoactivatable GFP (PAGFP) as follows. Plasmid pMDIC32 calnexin fused to PAGFP (CX-PAGFP) (46) was PCR amplified using the forward primer GCTGGATCCGGTGTAGCAAGGGCCAGG AGCTTGTT (the BamHI site is underlined) and the reverse primer AAC TGCAGTTACCTTGACAAGC (the PstI site is underlined). The amplified fragment was digested with BamHI and PstI and ligated with similarly restricted pCambia/6K2 to obtain pCambia/6K2-PAGFP.

Protein expression in plants. Transient expression was performed by agroinfiltration on 3-week-old N. benthamiana plants as described in reference 15. The Agrobacterium tumefaciens suspension was diluted to an optical density at 600 nm (OD600) of 0.03 for secreted GFP (secGFP) and GFP-HDEL (61), to 0.1 for p24BD1-YPF (12), ERD2-GFP (47), GFP fused to the transmembrane domain of the rat sialoglycoprotein (SEF-9) (9), and YFP-Sec24, to 0.05 for Arf1 constructs (43), and to 0.2 for the viral infectious clones. For coexpression, we agroinfiltrated a 1:1 mixture of the two AGL1 bacteria containing the plasmid of interest. Plants were kept for 3 or 4 days postagroinfiltration (dpi) in a growth chamber until observation.

Brefeldin A (BFA) (Sigma-Aldrich) was used at a final concentration of 10 μg/ml in dimethyl sulfoxide (DMSO). N. benthamiana leaves were agroinfiltrated with pCambiaTunos/6KmCherry/HDELGFP or with pCambiaTunos/6KmCherry along with pYFP-Sec24. The leaves were infiltrated with BFA 66 h later and observed by confocal microscopy after a 24-h incubation period.

Confocal microscopy. Agroinfiltrated leaf sections were mounted on a depression microscope slide, aligning the leaf tissue in the well. The cells were observed using a 10× objective, 40×, and/or 63× oil immersion objective on a Radiance 2000 confocal microscope (Bio-Rad) and/or on a LSM 510 Meta confocal microscope (Zeiss). For the Radiance 2000 microscope experiments, an argon-krypton laser was used to excite fluorescent proteins, and for LSM 510 Meta microscope experiments, argon and HeNe lasers were used. Data from both green and red channels were collected at the same time. Photobleaching and photoactivation of GFP was done with a Zeiss LSM 510 Meta system. Ten to fifteen pulses of the 405-nm laser were sufficient to activate PAGFP so that it produced very bright fluorescence emission that was detected by excitation at 488 nm using a 50- to 530-nm band pass filter. A 25-mW blue diode 405-nm laser was used at high output (50 to 100% transmission) to target globular structure or small region in the cytoplasm using the photobleaching function of the Zeiss software in time-lapse mode. Generally, 20 to 30 iterations were enough to bleach fluorescent proteins with the 488-nm laser.

After acquisition, images were processed using Metamorph to quantify the average intensity of fluorescence (6.2 r 6), and ImageJ (1.46k), Carl Zeiss LSM Image Browser, and/or Adobe Photoshop software for post-capture imaging processes.

Electron microscopy. Transmission electron microscopy (TEM) was performed essentially as described previously (23). Three-week-old N. benthamiana leaves were cut into fine pieces (3 mm by 3 mm) using a clean sharp razor blade. Leaves were fixed for 24 h in 2.0% glutaraldehyde, 4% paraformaldehyde, and 0.05% tannic acid in 0.1 M sodium cacodylate buffer (pH 7.4), washed three times in cacodylate buffer, and postfixed in 1% osmium tetroxide in the same buffer for 7 h, washed three times in buffer, and postfixed a second time in 1% osmium tetroxide and 1% potassium ferrocyanide overnight at 4°C. For a control, we rapidly fixed our samples just once in 3% KMnO4 for 4 h, and we observed the same structures but with fewer details, indicating that our fixation method did not induce any artifacts. The samples were washed four times in water, dehydrated in a series of ethanol solutions (30%, 40%, and 50%), and block stained overnight in 1% uranyl acetate in 50% ethanol at 4°C. The samples were dehydrated in ethanol, embedded in Epon 812 resin, and...
sliced into thin sections (70 nm thick) with an ultramicrotome Ultracut E of Reichert Jung. In addition, semithin sections (1 μm thick) were stained in toluidine blue for light microscope examination with a Zeiss microscope. Staining of thin sections was performed in 2% aqueous uranyl acetate for 7 min followed by treatment with lead citrate for 3 min. The sections were observed with a TEM Philips 201.

RESULTS

ER, Golgi bodies, COPII coatamers, and chloroplasts are amalgamated in a perinuclear globular structure during TuMV infection. To obtain an overall view of the structural changes that the endomembranes of the early secretory pathway undergo during infection, we examined the distribution of well characterized ER and Golgi organelle markers in TuMV-infected N. benthamiana cells by confocal microscopy. We first analyzed the morphology of the ER using GFP-HDEL, a luminal ER marker (61). In noninfected cells, the marker showed the characteristic cortical polygonal network of short interconnected tubules, transvacuolar strands, and labeling around the nucleus (Fig. 1A). In TuMV-infected cells, the cortical ER did not show any apparent modification, but the ER marker was additionally recruited into a large irregularly shaped globular-like structure juxtaposed to the nucleus in the midsection of the cell that also contained 6K2-mCherry (Fig. 1B). The ER was compacted within this structure and did not show a polygonal tubular pattern. Occasionally, the globular structure was distant from the nucleus, or two structures were seen in the same cell. The largest section of this structure was estimated to be 16 μm ≥ 4 μm long (n = 30). By comparison, we calculated the nuclear diameter to be 12 μm ± 3 μm (n = 30). The globular structure was linked to the cortical ER by transvacuolar strands (Fig. 1B, white arrowhead), and 6K2-mCherry-tagged vesicles essentially devoid of the GFP-HDEL marker were seen traveling along these strands and the polygonal ER tubules (see Movie S1 in the supplemental material). A similar result was obtained with P24σ1d-YFP, a resident membrane ER marker (12) (data not shown).

The morphology of the Golgi apparatus was analyzed using the cis-Golgi marker ERD2-GFP (47) and GFP fused to the transmembrane domain of the rat sialyl transferase (ST-GFP) (9), which is targeted to the trans-Golgi. In healthy cells, ST-GFP and ERD2-GFP were mainly found as Golgi bodies (9, 47). In TuMV-infected cells, in addition to Golgi bodies, ST-GFP and GFP were also localized to a large globular structure near the nucleus (Fig. 1D) that overlapped with the 6K2-mCherry fluorescent signal (Fig. 1C). Some individual bodies were seen, but the ST-GFP marker was predominantly diffuse within this structure. The ring-like configuration for some of the 6K2-mCherry fluorescent signals denoted the presence of chloroplasts (see below). Similarly, ERD2-GFP was found as individual Golgi bodies (not shown) but was recruited in the globular structure in a diffused form (Fig. 1G) along with 6K2-mCherry (Fig. 1F).

Production of punctate motile structures induced by TEV 6K2 occurred in a COPII- and COPI-dependent manner (57). We consequently investigated the distribution of the COPII coatamer component Sec24 (18) in the globular structure. YFP-Sec24 in healthy epidermal leaves were characteristically distributed as punctate structures (18). Although the punctate appearance of YFP-Sec24 was still observed in TuMV-infected cells (not observable in Fig. 1H), YFP-Sec24 was also detected in the globular structure induced by the virus (Fig. 1H).

Finally, the presence of chloroplasts in the globular structure was investigated as 6K2 vesicles were reported to associate with chloroplasts early in infection (56). Figure 11 to K show that the globular structure contained several chloroplasts, with 6K2-GFP labeling their contours.

To analyze the host membrane modifications at the ultrastructural submicron-resolution level, we performed electron microscopy analyses on 4-week-old N. benthamiana plants that had been agroinfected with TuMV 6 days before. The structural modifications that were observed cannot be attributed to Agrobacterium, since no detectable effect on the morphology of cellular organelles and on the endomembrane network was observed following agroinfiltration with an empty vector (and confirmed in reference 3). Figure 2A shows that infected cells contained characteristic “pinwheel” cytoplasmic inclusion bodies (black arrows) (30) and electron-translucent (+) and electron-opaque (∗) vesicles of 90 to...
emission by confocal microscopy at a 10× objective magnification (Fig. 3). For a positive control for intracellular retention, we expressed GFP-HDEL. The fluorescence emitted by GFP-HDEL was strong (Fig. 3A), in contrast to the fluorescence of secGFP, which was generally weak or undetectable (Fig. 3B) due to the apoplastic acidic pH (61, 62). On the other hand, expression of secGFP in TuMV-infected cells resulted in increased GFP fluorescence (Fig. 3C). We quantified the GFP fluorescence for each treatment using the MetaMorph software, and the data are shown in Fig. 3F. Compared to secGFP alone, we observed higher average intensity fluorescence when secGFP was expressed in infected cells. These data are in agreement with those observed during TEV infection (57).

High-magnification observations of secGFP in infected cells indicated that it was retained in the ER, with additional accumulation in the perinuclear globular structure (compare Fig. 3E and D). These results indicate that TuMV infection not only has important consequences for the morphology of the ER and Golgi apparatus but also has an impact on the secretory pathway by blocking protein secretion at the ER-Golgi interface.

The globular structure is not an isolated subcellular compartment. TuMV peripheral vesicles travel along microfilaments (15), ER transvacuolar strands, and tubules (see Movie S1 in the supplemental material), but the perinuclear globular structure is generally a static entity. However, the ER and Golgi apparatus are highly dynamic organelles, constantly undergoing remodeling (9, 39). Since the perinuclear globular structure observed in infected cells contains an amalgam of condensed ER and Golgi membranes, we wanted to investigate whether this compartment is nevertheless functionally linked to the bulk of nonmodified endomembranes. We consequently performed a fluorescence recovery after photobleaching (FRAP) experiment on TuMV-infected cells expressing ST-GFP. In one experiment, we selected a cell harboring two distinct globular structures around the nucleus and we used a 488-nm laser at high intensity to bleach the ST-GFP and 6K2-mCherry fluorophores in one of the two globular structures. We then monitored fluorescence recovery and redistribution every 10 s for 5 min. As shown in Fig. 4 and Movie S2 in the supplemental material, the recovery of 6K2-mCherry fluorescence did not occur over the 5-min time period, but ST-GFP fluorescence returned to near prebleach level within less than 2 min. In another experiment, we bleached half of the globular structure and observed the same results (data not shown).

Photoactivatable GFP (PAGFP) is used for fluorescent pulse-labeling of fusion proteins at a specific position within a cell, which allows their subsequent cellular redistribution to be monitored. PAGFP fused to the *A. thaliana* ER-resident protein calnexin (CX-PAGFP) (46) was used to monitor the dynamics of the ER membrane with reference to the globular structure in TuMV-infected cells. Expression of CX-PAGFP in TuMV-infected cells that produced 6K2-mCherry was observed by confocal microscopy 4 days after agroinfiltration of *N. benthamiana* plants. Photoactivation was performed in an area close to or within the globular structure in a 10- to 20-s pulse, and activated CX-PAGFP distribution was followed by time-lapse photography. The localized background level of green fluorescence observed prior to activation is attributed to the high concentration of CX-PAGFP in the globular structure. Following activation in an area next to the globular structure (Fig. 5A), CX-PAGFP fluorescence drastically increased and was found to move rapidly away from the site of activation toward the cortical ER and also into the globular struc-
After less than 1 min, the fluorescence from CX-PAGFP became weak at the site of activation and in the globular structure, suggesting rapid depletion of the pulsed activated protein. When activation was performed within the globular structure (Fig. 5B), activated CX-PAGFP fluorescence was seen to rapidly fill up and then to exit the globular structure toward the cortical ER. Throughout a 15-min observation period, the fluorescence due to CX-PAGFP remained high in the globular structure, indicating that this compartment is a reservoir that can hold a large quantity of ER membranes.

These data indicate that the perinuclear globular structure was not restocked in viral components, with no input of viral proteins from nearby perinuclear structures following photobleaching. On the other hand, the TuMV-induced globular structures were dynamically connected to the bulk of the ER and Golgi apparatus. The ER, although amalgamated with Golgi bodies and compacted in the globular structure, still retained its dynamic membrane properties and moved in and out of the virus-induced compartment.

The globular structure is functionally linked to motile peripheral 6K2 vesicles. 6K2 was also fused to PAGFP (6K2-PAGFP) and expressed in TuMV-infected N. benthamiana cells that produced 6K2-mCherry. Weak localized background of green fluorescence was observed in the globular structure prior to activation, probably due to the high concentration of 6K2-PAGFP in the structure (Fig. 6A). Photoactivation was performed for 10 to 20 s within the globular structure, and the dynamics of activated 6K2-PAGFP was then monitored by time-lapse photography (Fig. 6A). Following activation, 6K2-PAGFP fluorescence was found to rapidly fill up the globular structure, and after a delay of 25 s, a green fluorescing motile 6K2 vesicle was seen to originate and to move away from the structure. This experiment was repeated several times, and although few in numbers, vesicles exiting from the globular structure were consistently observed. When activation was performed next to the globular structure (Fig. 6B), motile vesicles were seen trafficking away or toward the globular structure. In the example provided in Fig. 6B, one vesicle was seen to move toward and subsequently exit from the globular structure. These experiments then provide evidence for a functional link between the perinuclear globular structure and peripheral 6K2 vesicles. Not only do the vesicles have their origin in the globular structure, but they can also be recycled back to it.

Brefeldin A does not abrogate the formation of the perinuclear globular structure. We next investigated the importance of ER-to-Golgi transport on the biogenesis of the globular structure. For this purpose, we treated cells with brefeldin A (BFA), a lactone antibiotic that primarily inhibits transport of proteins from the Golgi apparatus back to the ER (40). N. benthamiana leaves were agroinfected with TuMV expressing 6K2-GFP and were treated 66 h postinfection with DMSO or BFA at a concentration of 10 μg/ml before the globular structure could be observed. The cells were examined 24 h later by confocal microscopy. Treatment with BFA did not affect the formation of the perinuclear globular structure (Fig. 7C) and the production of peripheral vesicles, whose morphology was similar to that observed in untreated cells (compare the middle panels of Fig. 7A and B). However, when YFP-Sec24 was expressed in infected cells, the COPII marker punctate structures were larger and were found to be more frequently clustered with the peripheral vesicles (Fig. 7B) than in the absence of the drug (Fig. 7A). Using the JACoP plugin in ImageJ (10), the Pear...
son’s correlation coefficient R_r values were 0.38 ± 0.02 and 0.14 ± 0.02 in the presence or absence of BFA, respectively (Fig. 7D), which confirms increased clustering of 6K$_2$ vesicles with the CO-PII marker after BFA treatment.

BFA was shown to decrease the yield of TuMV particles produced during infection (56), but the assays used could not differentiate between inhibition of viral RNA replication/synthesis or inhibition of virus cell-to-cell movement. In order to discriminate between agroinfiltrated primary infected cells from secondary infected cells and thus assaysing for viral intercellular movement, we introduced a gene cassette encoding GFP-HDEL under the control of the cauliflower mosaic virus (CaMV) 35S promoter next to the TuMV cassette expressing 6K$_2$-mCherry, both of which are flanked by the left and right borders of the T-DNA in pCambia (Fig. 7E). Since both gene cassettes are delivered in the same cells and GFP-HDEL does not move between cells (4), primary infection foci were characterized by concomitant green and red fluorescence, while secondary infection foci exhibited red fluorescence only (Fig. 7F). No delay in virus infection and virus production was observed with this additional gene cassette, and cell-to-cell movement was observed 4 days after agroinfiltration (M. Agbeci et al., unpublished data manuscript in preparation).

N. benthamiana leaves were agroinfiltrated with the TuMV-6K$_2$mCherry/GFP-HDEL dual-cassette construct and were treated with DMSO or BFA at a concentration of 10 μg/ml 66 h postinfiltration. The treated leaf cells were examined 24 h later by confocal microscopy with a 10X objective. Virus cell-to-cell movement was readily observed in leaves treated with DMSO but was inhibited in BFA-treated leaf samples (compare Fig. 7F and G). The surface area for foci expressing mCherry only ($n = 20$) was quantified, and the data indicated higher average intensity fluorescence for leaves treated with DMSO than for leaves treated with BFA (Fig. 7H). In the case of primary infection foci, no difference in mCherry fluorescence intensity was detected between the two treatments (data not shown), suggesting that viral replication was unaffected by the drug. Since BFA may have unexpected effects on other cellular transport pathways, we repeated the experiment by expressing along with TuMV the dominant-negative Arf1 mutant (43), which primarily inhibits Golgi recycling back to the ER. Expression of this mutant had the same inhibitory effect on TuMV cell-to-cell movement as BFA did (Fig. 7I to K). Since the dominant Arf1 had the same effect as BFA, the globular structure was still observed. The above data suggest that the secretory pathway is not required for the formation of the TuMV-induced perinuclear structure and viral protein production. On the other hand, disruption of ER-to-Golgi transport caused the retention of 6K$_2$ vesicles with COPII coatamers and blocked virus cell-to-cell movement.
DISCUSSION

It was previously shown that the 6K₂ protein of TuMV induced the production of membrane-associated vesicular structures (5, 15, 17, 25, 53, 56). In the present investigation, we have investigated the impact of this production on the endomembranes of the early secretory pathway. The formation of a virus-induced perinuclear globular structure was characterized by the amalgamation of ER, Golgi, and COPII markers as well as chloroplasts within this structure, which also contained 6K₂ and hence replication complex components. However, the cortical ER and the bulk of Golgi bodies were apparently not affected. Even though the ER and Golgi apparatus had lost their characteristic organization in this globular structure, they remained connected to the host secretory pathway. This connection is likely important for the generation of peripheral 6K₂ vesicles, which have been shown to exit from the globular structure and possibly are recycled back. A similar functional link between peripheral bodies and their origin from the perinuclear ER has been noted in the case of Bamboo mosaic virus (31) and Potato mop-top virus (22), and in the latter case, recycling through the endocytic pathway has been suggested.

TuMV 6K₂-induced structures are associated with viral RNA and contain viral replication and host proteins known to be required for virus production (5, 15, 17, 25, 53, 56). The production of endomembrane aggregates in the perinuclear region has been reported for a few plant viruses (2, 11, 35, 45, 54). For instance, Potato virus X (PVX) infection induced the formation of a single large inclusion body known as “X-body” localized next to the nucleus that contained ribosomes, virions, and the viral RNA-dependent RNA polymerase (2). Recently, Tilsner et al. (54) have shown that X-body biogenesis resulted in the reorganization and accumulation of host actin, ER, and Golgi apparatus into that structure for the compartmentalization of viral gene products needed for virus replication. Similarly, Grapevine fanleaf virus (GFLV) (45) and Cowpea mosaic virus (CPMV) (11) infection led to the redistribution of the ER to generate a perinuclear viral compartment where replication took place. It is then likely that the perinuclear structure is a major site for viral RNA replication. Curiously, Golgi bodies were not found in the perinuclear compartments for GFLV and CPMV, which is different from what is observed for TuMV and PVX. This noticeable discrepancy suggests the existence of different mechanisms for host endomembrane recruitment during infection.

One question is whether formation of the perinuclear structure is a result of redistribution of existing ER and Golgi membranes or...
of de novo synthesis. First, we did not notice any changes in the morphology of the cortical ER, and the number of Golgi bodies outside the globular structure appeared to be of the same order, whether the cell was infected or not. Additionally, the lack of depletion of CX-GFP fluorescence over an extended period (at least 15 min) when activation was done within the structure suggests that the globular structure is a large reservoir of ER membranes. Finally, it has been reported that plant viral infections stimulate de novo membrane synthesis (2, 11, 32, 45). These observations would suggest that the recruitment of organelles into the TuMV globular structure results from an increase in ER and Golgi synthesis, which would reflect a need for the sustained high synthetic activity that is required for virus production.

Interestingly, aberrant perinuclear globular structures entwined by actin cables and composed of ER, Golgi apparatus, and soluble secreted markers were also observed in mutant *A. thaliana* lines (18, 38). These lines have a defect in one of the Sec24 isomers (59). In the case of TuMV, we also think that the inhibition of protein transport at the ER-Golgi interface has been noted during vertebrate RNA virus infections (13, 14, 37, 50). The Norwalk virus non-structural p22 and the picornaviral 3A and/or 2BC proteins are responsible for this phenomenon. In the case of p22, a YXFESDG motif that mimics a diacidic ER export signal plays a critical role as an ER/Golgi trafficking antagonist (50). Alternatively, the 3A protein inhibits GBF1, a guanine nucleotide exchange factor that activates small Arf1 GTPase involved in COPI vesicle formation (59). In the case of TuMV, we also think that the inhibition of protein secretion is a consequence of viral modification of the ER-Golgi interface. The TuMV 6K2 protein shares some characteristics with these viral proteins (e.g., presence of a transmembrane domain responsible for vesicle formation) and may have an ER export signal (33). It will be interesting to investigate whether 6K2 targets a component of the early secretory pathway at the ER-Golgi interface that leads to inhibition of protein secretion and formation of the perinuclear globular structure.

BFA treatment or the coexpression of a dominant-negative mutant of Arf1 did not affect the formation of the globular structure or the production of viral proteins in primary infected cells, suggesting that viral replication proceeded normally. It thus appears that the ER-Golgi interface does not play a direct role in the globular structure morphogenesis or functionality. This situation is analogous to what has been observed during coronavirus infection where virus-induced remodeling of endoplasmic reticulum membranes and viral replication, albeit reduced, still took place in the presence of BFA (28). Additionally, production of peripheral 6K2 vesicles was not affected, although they showed increased overlap with the COPII marker Sec24. The importance of the secretory pathway for viral movement protein-induced vesicle trafficking and for intercellular virus movement has been demonstrated for many plant viruses (1, 20, 21, 35). In the case of Poa semilatent virus, trafficking may involve an unconventional mechanism, since treatment with secretory pathway inhibitors had no detectable effect on peripheral body formation (49). This is analogous to what we observed in the case of TuMV, but the increased clustering of Sec24 with the peripheral vesicles indicates that the latter may have become dysfunctional. This suggests that disruption of the early secretory pathway slows down the budding of 6K2 vesicles at ERES, which is then reflected in the inhibition of virus intercellular movement.

On the basis of the data generated in the present investigation,
we suggest the following model to describe cellular remodeling during TuMV infection (Fig. 8). Early in the infection process, the incoming viral RNA is translated and the viral gene products contribute to the formation of the perinuclear globular structure. Replication events (i.e., negative- and positive-sense RNA transcription) take place within this globular structure, and these events would still happen even if the ER-Golgi interface is disrupted during viral infection. After this step, viral egress is initiated by the budding of 6k vesicles at ERES in the globular structure, which then traffic along the ER/microfilaments toward the plasma membrane and plasmodesmata for ultimate delivery of the virus into neighboring cells. At that point, some peripheral vesicles may be recycled back to the globular structure. Future investigations will aim at identifying host proteins that are involved in the formation of the perinuclear structure and why in the absence of MTOC, such a large viral structure can be formed near the nucleus.

ACKNOWLEDGMENTS

We thank M. Desrosiers and J. Lacoste for helping with confocal microscopy, C. Hawes for ERD2-GFP, and J. Runions for CX-PAGFP. We thank H. Sanfaçon for critically reading the manuscript.

This study was supported by the Natural Sciences and Engineering Research Council of Canada and from Le Fonds de recherche du Québec – Nature et technologies to H.Z. and J.-F.L.

REFERENCES

