Dissection of the Role of the Stable Signal Peptide of the Arenavirus Envelope Glycoprotein in Membrane Fusion

Emily L. Messina, Joanne York, and Jack H. Nunberg
Montana Biotechnology Center and Division of Biological Sciences, The University of Montana, Missoula, Montana, USA

The arenavirus envelope glycoprotein (GPC) retains a stable signal peptide (SSP) as an essential subunit in the mature complex. The 58-amino-acid residue SSP comprises two membrane-spanning hydrophobic regions separated by a short ectodomain loop that interacts with the G2 fusion subunit to promote pH-dependent membrane fusion. Small-molecule compounds that target this unique SSP-G2 interaction prevent arenavirus entry and infection. The interaction between SSP and G2 is sensitive to the phylogenetic distance between New World (Junin) and Old World (Lassa) arenaviruses. For example, heterotypic GPC complexes are unable to support virion entry. In this report, we demonstrate that the hybrid GPC complexes are properly assembled, proteolytically cleaved, and transported to the cell surface but are specifically defective in their membrane fusion activity. Chimeric SSP constructs reveal that this incompatibility is localized to the first transmembrane segment of SSP (TM1). Genetic changes in TM1 also affect sensitivity to small-molecule fusion inhibitors, generating resistance in some cases and inhibitor dependence in others. Our studies suggest that interactions of SSP TM1 with the transmembrane domain of G2 may be important for GPC-mediated membrane fusion and its inhibition.

Arenaviruses comprise a diverse family of enveloped negative-strand RNA viruses that are endemic to rodent populations worldwide. Infection can be transmitted to humans to cause severe acute hemorrhagic fevers with high morbidity and mortality. Lassa fever virus (LASV) is prevalent in western Africa, infecting a half-million persons annually (26). Five species of New World (NW) hemorrhagic fever viruses are distributed throughout South America, including the Junin virus (JUNV) in Argentina. New arenavirus species frequently emerge from rodent reservoirs (5, 9, 11). In the absence of effective vaccines or therapies, the hemorrhagic fever arenaviruses are recognized to pose significant threats to public health and biodefense. Accordingly, these viruses are classified as Category A priority pathogens, and JUNV has additionally been determined by the Department of Homeland Security to pose a Material Threat to the U.S. population.

Arenavirus entry into the host cell is mediated by the virus envelope glycoprotein (GPC) (Fig. 1). Upon binding to a cell surface receptor (reviewed in references 10 and 29), the virion is endocytosed, and GPC-mediated fusion of the viral and endosomal membranes is activated upon acidification in the maturing endosome. GPC is synthesized as a precursor glycoprotein and cleaved by the cellular SKI-1/S1P protease in the Golgi (22, 25) to generate the receptor-binding (G1) and transmembrane fusion (G2) subunits. The mature GPC complex is metastable and thus primed to mediate membrane fusion in response to acidic pH. Upon activation, GPC undergoes a series of conformational changes leading to formation of a trimer-of-hairpins structure (14, 20, 41) and fusion of the viral and cellular membranes (reviewed in references 19 and 39). The arenavirus GPC is unique among class I envelope glycoproteins in that it retains its cleaved signal peptide as a third subunit (13, 15, 47).

The 58-amino-acid stable signal peptide (SSP) of GPC contains two hydrophobic segments that span the membrane and are joined by a short ectodomain loop (Fig. 1) (2). The cytoplasmic N terminus of SSP is myristoylated, while the penultimate C-terminal cysteine (C57) coordinates with a zinc-binding domain in the cytoplasmic tail of G2 to form an intersubunit structure that anchors SSP in the GPC complex (6, 43). SSP association masks endogenous endoplasmic reticulum (ER) retention/retrieval signals in the cytoplasmic domain of G2 to facilitate GPC transport through the Golgi (1), whereupon the precursor is proteolytically cleaved and transported to the cell surface for virion assembly.

Our studies suggest that pH-induced activation of the mature GPC complex is controlled by a unique interaction between the short ectodomain loop of SSP and the G2 fusion subunit. Side chain substitutions that reduce positive polarity at SSP K33 depress the pH required to trigger membrane fusion (46), and this phenotype can be rescued by secondary mutations in G2 (45). Importantly, this SSP-G2 interaction provides a molecular target for small-molecule compounds that stabilize the prefusion GPC complex, thereby preventing pH-induced activation in the endosome (4, 23, 24, 42). The different classes of fusion inhibitors demonstrate distinct patterns of specificity against New World (NW) and Old World (OW) arenaviruses yet share a binding site on GPC (4, 23, 37, 42). Sequence variation at the nominal SSP-G2 interface likely accounts for the differences in species specificity (37, 42). Several of these fusion inhibitors have recently been shown to protect against lethal arenavirus disease in animal models (4, 8).

Sequence variation between OW and NW arenavirus species may also affect the ability of one SSP to function in the context of a heterotypic GPC complex. For instance, recombinant JUNV virions in which SSP and the G1G2 precursor are heterotypic are not viable (3). We have exploited this interspecies incompatibility between LASV and JUNV GPCs to identify determinants in SSP required for membrane fusion activity. We found that SSP asso-

Received 3 January 2012 Accepted 14 March 2012
Published ahead of print 21 March 2012
Address correspondence to Jack H. Nunberg, jack.nunberg@umontana.edu.
Copyright © 2012, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JVI.07241-11
cation, proteolytic maturation, and transport to the cell surface are promiscuous in interspecific hybrid GPCs and that heterotypic SSPs support these functions in the context of either JUNV or LASV G1G2 precursors. Preservation of pH-dependent membrane fusion, however, requires a specific homotypic match in the first transmembrane domain (TM1) of SSP. We propose that this amphipathic helical region of SSP interacts with the transmembrane domain of G2 and thus contributes to the pH-dependent membrane fusion activity of arenavirus GPC.

MATERIALS AND METHODS
Plasmids. GPC from the pathogenic MC2 isolate of JUNV (17) and from the Josiah isolate of LASV (23) was expressed using the minimal T7 promoter sequence in pcDNA 3.1-based vectors (Life Technologies). In order to obviate concerns regarding signal peptide cleavage of SSP in the chimeric GPC constructs, SSP and G1G2 open reading frames were expressed from separate plasmids, taking advantage of the ability of the two polypeptides to associate in trans to reconstitute the functional GPC complex (12, 44). The G1G2 precursor was directed to the membrane using the conventional signal peptide of human CD4, as previously described (44). An innocuous FLAG affinity tag was appended to the C terminus of SSP forming as previously described (46). Briefly, Vero cells infected by vTF-7 vaccinia virus-based assay for GPC-mediated cell-cell fusion was performed as previously described (46). Brieﬂy, Vero cells infected by vTF-7 and expressing GPC are cocultured with cells infected with a recombinant vaccinia virus vCB21R-lacZ bearing the β-galactosidase gene under the control of the T7 promoter (28). Cell-cell fusion is triggered by exposure to medium adjusted to pH 5.0 and detected through β-galactosidase expression in the newly formed syncytia. Fusion is quantitated by chemiluminescence using the GalactoLite Plus substrate (Life Technologies). Fusion inhibition by small-molecule SIGA compounds was determined as previously described (42) and GraphPad Prism software was used for nonlinear regression calculations using a single-slope dose-response model constrained to 100% fusion in the absence of inhibitor.

Analysis of GPC-dependent membrane fusion. The recombinant vaccinia virus-based assay for GPC-mediated cell-cell fusion was performed as previously described (46). Brieﬂy, Vero cells infected by vTF-7 and expressing GPC are cocultured with cells infected with a recombinant vaccinia virus vCB21R-lacZ bearing the β-galactosidase gene under the control of the T7 promoter (28). Cell-cell fusion is triggered by exposure to medium adjusted to pH 5.0 and detected through β-galactosidase expression in the newly formed syncytia. Fusion is quantitated by chemiluminescence using the GalactoLite Plus substrate (Life Technologies). Fusion inhibition by small-molecule SIGA compounds was determined as previously described (42) and GraphPad Prism software was used for nonlinear regression calculations using a single-slope dose-response model constrained to 100% fusion in the absence of inhibitor.

In order to circumvent biosafety concerns associated with the use of vaccinia viruses, we developed an alternative fusion reporter assay based on expression of T7 polymerase in BSR T7/5 cells. In this format, GPC-expressing BSR T7/5 cells were cocultured with human 293T cells transfected with the internal ribosome entry site (IRES)-containing pT7ME-Luc reporter plasmid expressing luciferase under the control of the T7 promoter (34), which was kindly provided by Yoshiharu Matsuura (Osaka University). Following a 3-min exposure to medium adjusted to pH 5.0, the coculture was continued at neutral pH for 12 h to allow for luciferase expression. Cell-cell fusion was detected using the luciferase assay kit substrate (Promega). Consistency of GPC expression was monitored by immunohistochemical staining. Results from this novel fusion reporter assay were validated in parallel experiments using the well-established vaccinia virus-based assay.
RESULTS AND DISCUSSION

Divergence between JUNV and LASV SSPs. A comparison of the amino acid sequences of JUNV and LASV SSPs reveals a high degree of sequence divergence, as well as an overall conservation of sequence motifs (Fig. 1). The two hydrophobic domains (h1 and h2) in each are separated by a short region containing the conserved K33 residue (46). A myristoylation motif and zinc-coordinating cysteine (C57) are present in both N- and C-terminal cytoplasmic domains, respectively (2). Both SSPs are also predicted to possess similar secondary structure features, with two helical regions interspersed by an unstructured ectodomain loop. Despite these similarities, fewer than 40% of the amino acids are identically conserved.

Hybrid GPC containing heterologous SSP and G1G2. Reverse-genetics studies have shown that hybrid GPC complexes are functional for arenavirus infection if and only if SSP is homotypic with the TM and C-terminal cytoplasmic domains of G2 (3). To investigate the molecular basis for this finding, we characterized the assembly, transport, and function of hybrid GPCs. Taking advantage of the observation that SSP can associate in trans with the G1G2 precursor to reconstitute the functional GPC complex (12, 47), we coexpressed JUNV or LASV SSP with the reciprocal G1G2 precursors, which contained the conventional signal peptide of human CD4 (44, 47).

Membrane fusion activity of the homologous and heterologous hybrid GPCs was determined using a biosafe modification of the well-characterized vaccinia virus-based cell-cell fusion assay (47). BSR T7/5 cells expressing the bacteriophage T7 polymerase (7) were cotransfected with pcDNA3.1-based plasmids expressing SSP and the G1G2 precursor under the control of the T7 promoter. These cells were then cocultured with 293T fusion reporter cells expressing luciferase in a T7 polymerase-dependent manner. Cell-cell fusion was initiated by exposing the coculture to medium adjusted to pH 5.0, and luciferase expression in the newly formed syncytia was determined following continued incubation at neutral pH. Using this assay, we verified that neither of the two heterotypic GPC hybrids (JUNV SSP with LASV G1G2 or LASV SSP with JUNV G1G2) was able to mediate membrane fusion (Fig. 2A). Concordant cell-cell fusion results were obtained using the vaccinia virus-based fusion reporter assay (reference 47 and data not shown).

Hybrid GPC assembles and is transported to the cell surface. To determine the molecular basis of heterotypic incompatibility, we first investigated the ability of SSP to associate with the G1G2 precursor. It is possible that the absence of membrane fusion activity reflects an inability of SSP to bind the heterologous G1G2 precursor, thereby preventing GPC transport through the Golgi, proteolytic maturation, and cell surface expression. To assess GPC biogenesis, SSP and the G1G2 precursor were expressed in trans, and metabolically labeled GPC was immunoprecipitated (44) using MAbs directed to either JUNV G1 (33) or the C-terminal FLAG tag on LASV G2. We found that GPC protein synthesis was markedly reduced in BSR T7/5 cells relative to that typically seen in Vero cells infected with recombinant vaccinia viruses expressing T7 polymerase (16, 47), presumably reflecting the absence of mRNA capping in the cytosol of transfected BSR T7/5 cells. Nevertheless, SDS-PAGE analysis showed that SSP association in the heterotypic GPCs was similar to that in the homotypic complex (Fig. 3A). Furthermore, this association was sufficient to promote
a significant degree of proteolytic maturation of the heterologous G1G2 precursor (Fig. 3A).

Flow cytometry was used to confirm trafficking of the heterotypic GPC hybrids to the cell surface. Due to the low level of expression of LASV GPC in BSR T7/5 cells (Fig. 3A), we used a well-characterized pCAGGS plasmid vector (27) for these studies of GPC transport (38). Cell surface accumulation of heterologous GPC hybrid was found to be similar to that of the homotypic protein in both cases (Fig. 3B). As GPC transport does not require proteolytic cleavage (1,36), these findings assess an independent function of SSP association. Conversely, transit of GPC through the Golgi, as evidenced by proteolytic cleavage, is predictive of cell surface expression. Despite substantial sequence divergence, both heterologous SSPs were capable of promoting the assembly and maturation of the hybrid GPC complex, as well as its transport to the plasma membrane. This result agrees with previous studies using a recombinant LASV GPC encoding JUNV SSP (3). Because very low levels of mature GPC are sufficient to support membrane fusion activity (2,40), we surmise that the partial reductions in SSP association and proteolytic cleavage in the heterotypic GPC hybrids are by themselves insufficient to explain the complete loss of fusogenicity. This conclusion is reinforced by the overall lack of correlation between variations in proteolytic cleavage and membrane fusion activity in studies using chimeric SSP molecules (see below).

Interchange of the ectodomain loop in SSP. We have previously shown that the short ectodomain loop of SSP is critical for pH-dependent membrane fusion and its inhibition by small-molecule inhibitors (42,46). This region of JUNV SSP is defined by charged residues at the ectodomain termini of TM1 and TM2 (K33 and K40, respectively) (Fig. 1). We therefore subdivided SSP into three regions for purposes of constructing chimeras: region 1 included the myristoylated N terminus of SSP and TM1 (residues M1 to K33), region 2 comprised the ectodomain loop (K33 to K40 in JUNV, T40 in LASV), and region 3 contained TM2 and the short cytoplasmic domain bearing C57 (to the C-terminal T58). All combinations of the three JUNV and LASV subdomains were constructed (Fig. 2A), and the chimeric SSPs were named according to the three regions. For instance, JJJ represents the wild-type JUNV SSP and JLJ signifies a chimera in which the ectodomain from LASV was fused to regions 1 and 3 of JUNV SSP. For clarity, we will refer to recombinant SSPs as chimeras and reserve the term hybrid for the reconstituted GPC complex.

As anticipated from the fully heterotypic GPC hybrids (Fig. 3A), all of the chimeric SSPs associated with the JUNV G1G2 precursor and supported proteolytic cleavage in BSR T7/5 cells.
(Fig. 4). Parallel metabolic labeling studies using LASV GPC again showed poor expression but nonetheless allowed similar conclusions (not shown). These findings were further validated using recombinant vaccinia virus to drive GPC expression (reference 47 and data not shown). We conclude that the sequence requirements for SSP association and proteolytic maturation are relatively relaxed in interspecific GPC chimeras.

Despite its critical role in membrane fusion, interspecific exchange of the ectodomain loop had little effect on the fusion activity of hybrid GPCs (Fig. 2A). LJL did not restore fusion activity to the JUNV G1G2 hybrid (~3% of wild-type JUNV GPC) and likewise the reciprocal JLJ SSP in the LASV G1G2 hybrid (~1% of wild-type LASV GPC). Conversely, replacement of the ectodomain in JUNV SSP with that of LASV (JLJ) had a relatively small effect on the fusion activity of the hybrid JUNV GPC (~40% of JUNV GPC). The reciprocal hybrid, LASV G1G2 bearing LJL SSP, retained a lower albeit significant level of activity (~10% of LASV GPC). We conclude that a homotypic ectodomain loop in SSP is neither sufficient nor absolutely necessary to support membrane fusion by the hybrid GPC complex.

Region 1 of SSP is essential for membrane fusion activity. Analysis of the remaining SSP chimeras did reveal an important role for the N-terminal region 1 in SSP function. Only LASV hybrids containing the homologous region 1 (LJL, LJL, and LJL) showed significant membrane fusion activity (Fig. 2A). Whereas the LJL hybrid supported ~10% of wild-type activity (above), the latter two SSP chimeras promoted cell-cell fusion at levels comparable to those of native LASV GPC. The reciprocal pattern was seen with the JUNV G1G2 precursor and the JLJ, JLL, and JLL chimeras. In JUNV GPC, SSP bearing a mismatch in regions 1 and 2 (LLJ) unexpectedly also exhibited fusion activity (~20% of the wild type). By comparison, all hybrids displayed similar patterns of GPC expression (Fig. 4). Taken together, these results indicate that homotypic pairing in SSP region 1 is paramount for membrane fusion activity. Region 2 appears to contribute somewhat to activity when the homologous region 1 is present (JLJ and LLJ), whereas homology in region 3 is relatively unimportant. The reciprocal relationship between JUNV and LASV hybrids validates the importance of region 1 as a determinant of GPC-mediated membrane fusion.

The apparent indifference to sequence variation in region 3 is consistent with previous results from mutational studies (2). Triplet alanine replacements in TM2 of JUNV SSP (44FQF46 and 47FVF49 mutants) have no affect on fusogenicity. Similarly in the short C-terminal cytoplasmic tail of SSP, only the conserved C57 side chain is essential for membrane fusion activity (44). Collectively, these observations suggest a lack of sequence specificity in the function of region 3. However, the presumed helical nature of TM2 appears to be important, as SSP association is completely abrogated by single amino acid deletions that are expected to alter the register of the helix (2).

TM1 forms an extended helical domain. To further dissect the role of region 1 in fusogenicity, we bisected the N-terminal cytoplasmic and TM regions using the conserved E17 as the nominal cytosolic junction of TM1. Thus, the (J1L2) exchange in region 1 comprised JUNV residues M1 to E17 and LASV residues E17 to K33 (Fig. 2B). SSPs including the reciprocally exchanged sequences (J1L2 and L1J2) associated with and supported proteolytic maturation of both JUNV (Fig. 4) and LASV precursors (not shown) but were entirely defective in promoting membrane fusion (Fig. 2B). In contrast, the parental SSP chimeras containing the intact region 1 (J1L and J1J) produced functional hybrids with their respective G1G2 precursors. The symmetric loss of fusogenicity at this junction is likely to reflect an internal sequence incompatibility within the SSP chimeras rather than between SSP and G2.

Secondary structure predictions suggested a possible explanation for this intramolecular incompatibility (Fig. 1). For both JUNV and LASV SSP, prediction algorithms (30) suggest that the helical structure of TM1 extends N terminally to the conserved proline at position 12. To test this notion, we generated additional region 1 exchanges in which TM1 was extended N terminally to P12. We found that an SSP chimera including the extreme N-terminal residues of LASV (residues M1 to P12) and the extended helical region of JUNV (residues P12 to K33), referred to as (Lex)JL, supported cell-cell fusion comparably to the parental JLL chimera in the hybrid JUNV GPC (Fig. 2B). Likewise, SSPs containing the (Lex)LJL and (Lex)LJ exchanges promoted detectable fusion activity in LASV G1G2 hybrids. In keeping with our previous finding that replacing E17 with alanine did not disrupt membrane fusion activity (46), we propose that TM1 spans P12 to K33 to form a functional transmembrane subdomain in SSP.

The above results also suggest that the extreme N terminus of SSP, comprising a myristylation motif (GxxxS/T) and residues through I11, is interchangeable between JUNV and LASV. Indeed, alanine-scanning mutagenesis in this region of LCMV SSP showed only minimal effects on fusogenicity (35). The amino acid sequence of the cytoplasmic portion of region 1 appears relatively unimportant for membrane fusion activity. By contrast, the lack of myristoylation in SSP reduces fusogenicity by ~80% through an unknown mechanism (35, 47).

Genetic analysis of the extended TM1. Site-directed mutagen-
We suggest that ST-193 binding to N20A compensates for the loss of a critical interaction, possibly enhancing ST-193 binding affinity. A proline-to-alanine substitution (N20A) at this conserved position in JUNV SSP showed no significant effects on sensitivity; however, high helical propensity. Alanine substitutions at 13TFL15 and 29IAI31 with triplet alanines, a small residue with three hydrophobic sequences in TM1 of JUNV SSP (13TFL15, 22ALV24, and 29IAI31) were found to disrupt membrane fusion activity (Fig. 2C). The identical mutant in LCMV SSP also showed significant fusion activity (~30% of the wild type) (Fig. 2C), as did the identical mutant in LCMV GPC (35). Interestingly, structural predictions by the Robetta server (http://robbetta.bakerlab.org) (21) consistently position N20 at a kink in the TM1 helix (not shown).

SSP chimeras differ in sensitivity to small-molecule fusion inhibitors. We have previously shown that both pH-dependent activation and its inhibition by small-molecule fusion inhibitors are mediated through interactions between SSP and the G2 fusion subunit (42, 45, 46). We therefore examined the sensitivity of hybrid GPCs to inhibition by the four chemically distinct fusion inhibitors discovered by SIGA Technologies (Corvallis, OR) (4, 23, 37, 42). These compounds share a binding site (37) but differ in their specificity toward NW and OW arenaviruses: ST-294 and ST-761 are active only against NW viruses, ST-161 is specific for LASV, and ST-193 is broadly inhibitory against both OW and NW arenaviruses (4, 23, 37, 42).

As hybrid GPCs heterotypic in SSP region 1 are nonfunctional, we focused our attention on the ectodomain loop, a region previously shown to affect inhibition (42). Substitution of the JUNV ectodomain loop in LASV GPCs [LL] and [JexLJLL] abrogated inhibition by the LASV-active compounds ST-161 and ST-193 (not shown). In contrast, replacement of the ectodomain loop in JUNV GPCs (JLL, JLJ) showed no significant effects on sensitivity; all were inhibited by ST-294, ST-761, and ST-193 and resistant to ST-161 (not shown). Structural differences at the hybrid inhibitor-binding site likely contribute to the differing contributions of the heterotypic SSP ectodomain in LASV and JUNV GPC. None of the hybrids displayed de novo sensitivity to inhibition.

We utilized the panel of alanine mutations in JUNV TM1 to further identify specific side chains that may influence sensitivity to inhibition. The triplet-alanine mutant (the 29IAI31 mutant), with substitutions adjacent to the SSP ectodomain and the critical K33 residue, was found to be unchanged in its sensitivity to ST-294 and ST-193 and resistant to ST-161 (Fig. 6 and Table 1). Similarly, individual alanine mutations at Q16, E17, and S27 on the hydrophobic face of TM1 did not significantly alter the pattern of inhibition. By contrast, alanine substitutions toward the cytosolic terminus of TM1 (P12A and T13A) engendered resistance to ST-193 without qualitative or quantitative changes in the effects of ST-294, ST-761, or ST-161 (Fig. 6 and Table 1). Furthermore, the N20A mutant was now strikingly dependent on ST-193 for wild-type fusion activity. Fusion was enhanced by the addition of ST-193 in a dose-dependent manner. Maximal activity approaches 10% of the wild type (Fig. 2C), at which point inhibitory and/or cytotoxic effects may intervene. Sensitivities to ST-294 and ST-161 remain unaffected. The diversity in the effects of these different amino acid substitutions highlights the multiplicity of determinants for fusion inhibition within the GPC complex (42, 45).

We suggest that ST-193 binding to N20A compensates for structural changes induced by the mutation, thereby facilitating on-path conformational changes during pH-induced activation.

FIG 5 Helical-wheel projections of the amphipathic TM1 of JUNV and LASV SSP. The drawing was prepared using DrawCoil 1.0 (18). This view is from the N terminus of TM1 (P12) and extends through K33 in the SSP ectodomain. Polar residues are highlighted in gray.
of membrane fusion. Mutations in G2 previously reported to increase the pH of activation in the K33Q mutant to wild type without themselves affecting pH sensitivity may act similarly (45). Among these compensatory G2 mutations, two (D400A and F427A) also engender resistance to ST-193 and ST-294 (reference 42 and J.Y. and J.H.N., unpublished data). Based on the dependence of the N20A mutant on the presence of inhibitor, we infer that resistance at the two G2 positions, as well as that in P12A and T13A SSP mutants, may reflect a balance of inhibitory and compensatory consequences of ST-193 binding rather than a simple loss in binding affinity.

Conclusions. Our previous studies have shown that the short ectodomain loop of SSP and its interactions with G2 are important determinants for both pH-dependent membrane fusion and its inhibition by small-molecule compounds (42, 46). The present study identifies the critical role of the first membrane-spanning domain of SSP in these events. By characterizing a series of SSP chimeras containing JUNV and LASV sequences, we demonstrate that a homotypic pairing between TM1 and G2 is required for GPC-mediated membrane fusion. We propose that multiple intersubunit contacts between these transmembrane helices serve to position the critical K33 side chain in the SSP ectodomain for pH-sensitive interactions with the G2 ectodomain. Small-molecule compounds that stabilize these interactions in the prefusion GPC complex have been shown to prevent pH-induced fusion activation in the endosome and thereby inhibiting arenavirus entry. Detailed knowledge of the atomic interactions between SSP and G2 in the membrane-anchored GPC trimer will be important for understanding the mechanism of pH-dependent membrane fusion and guiding the design of potent and broadly active small-molecule fusion inhibitors.

TABLE 1 JUNV GPC-mediated fusion IC50a

<table>
<thead>
<tr>
<th>SSP</th>
<th>ST-294 (μM)</th>
<th>ST-761 (μM)</th>
<th>ST-193 (μM)</th>
<th>ST-161 (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wt</td>
<td>1.0 (0.8–1.2)</td>
<td>0.7 (0.6–1.0)</td>
<td>2.9 (2.1–4.0)</td>
<td>96 (57–160)</td>
</tr>
<tr>
<td>IAI</td>
<td>0.4 (0.4–0.5)</td>
<td>nd</td>
<td>1.5 (1.1–2.2)</td>
<td>450 (67–3100)</td>
</tr>
<tr>
<td>P12A</td>
<td>1.9 (1.6–2.3)</td>
<td>1.4 (1.1–1.7)</td>
<td>50 (9.5–250)</td>
<td>33 (9.4–120)</td>
</tr>
<tr>
<td>T13A</td>
<td>3.2 (2.4–4.3)</td>
<td>1.4 (1.1–1.9)</td>
<td>19 (12–33)</td>
<td>24 (11–51)</td>
</tr>
<tr>
<td>Q16A</td>
<td>1.7 (1.5–1.9)</td>
<td>0.9 (0.8–1.2)</td>
<td>4.1 (2.4–7.0)</td>
<td>15 (4.4–54)</td>
</tr>
<tr>
<td>E17A</td>
<td>1.4 (1.1–1.8)</td>
<td>0.9 (0.7–1.2)</td>
<td>1.0 (0.6–1.6)</td>
<td>8.4 (4.1–17)</td>
</tr>
<tr>
<td>N20A</td>
<td>3.1 (2.0–4.7)</td>
<td>nd</td>
<td>Enhanced</td>
<td>140 (77–250)</td>
</tr>
<tr>
<td>S27A</td>
<td>2.8 (1.7–4.4)</td>
<td>1.3 (0.9–3.0)</td>
<td>3.0 (2.3–3.9)</td>
<td>71 (45–110)</td>
</tr>
</tbody>
</table>

aBest-fit nonlinear regression using dose-response model and data shown in Fig. 6. Significant changes in inhibitor concentrations required to reduce JUNV GPC-mediated fusion by 50% (IC50) are indicated in bold. Enhanced, dose-dependent enhancement of fusion activity. nd, inhibition by ST-761 was not tested; wt, wild type; CI, confidence interval.

ACKNOWLEDGMENTS

We are grateful to Min Lu (Public Health Research Institute, University of Medicine and Dentistry, New Jersey) and Meg Trahey (The University of Montana) for their editorial comments and assistance. We are also grateful to Sean Amberg and Dongcheng Dai (SIGA Technologies, Inc., Corvallis, OR) for providing small-molecule fusion inhibitors and to Celestine Thomas (The University of Montana) for assistance in 3D modeling of SSP. We thank Connie Schmaljohn (USAMRIID) for providing the LASV G1-specific hybridoma L52 134-23, Klaus Conzelmann (Ludwig-Maximilians-University, Munich, Germany) for the BSR T7/5 cell line, and Yoshiharu Matsuura (Osaka University, Japan) and Juan Carlos de la Torre (The Scripps Research Institute, La Jolla, CA), respectively, for the pT7EMC-luc and pCAGGS-MCS expression plasmids. JUNV G1-specific MAbs were provided by the CDC through the NIH Biodefense and Emerging Infections Research Resources Program.

This work was supported by U.S. Public Health Service grants R01 AI074818 and U54 AI065357 (Rocky Mountain Regional Center of Excellence for Biodefense and Emerging Infectious Diseases at Colorado State University) from the National Institutes of Health.

REFERENCES

molecule inhibitor of hemorrhagic fever New World arenaviruses. Anti-
viral Res. 69:86–89.
24. Lee AM, et al. 2008. Unique small molecule entry inhibitors of hemor-
34. Satoh T, et al. 2008. PIRAlph a is a herpes simplex virus-1 entry corecep-
tor that associates with glycoprotein B. Cell 132:935–944.
36. Schlie K, Streeker T, Garten W. 2010. Maturation cleavage within the ectodomain of Lassa virus glycoprotein relies on stabilization by the cyto-
37. Thomas CJ, et al. 2011. A specific interaction of small-molecule entry inhibitors with the envelope glycoprotein complex of the Junin hemor-