Recombinant Infectious Bursal Disease Virus Carrying Hepatitis C Virus Epitopes

Chitra Upadhyay,1 Arun Ammayappan,1 Deendayal Patel,3 Imre Kovesdi,2 and Vikram N. Vakharia1*

University of Maryland Biotechnology Institute, Center of Marine Biotechnology, 701 East Pratt Street, Suite 236, Baltimore, Maryland 212021; VectorLogics, Inc., Birmingham, Alabama 352942; and Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, New York 142033

Received 2 July 2010/Accepted 10 November 2010

The delivery of foreign epitopes by a replicating nonpathogenic avian infectious bursal disease virus (IBDV) was explored. The aim of the study was to identify regions in the IBDV genome that are amenable to the introduction of a sequence encoding a foreign peptide. By using a cDNA-based reverse genetics system, insertions or substitutions of sequences encoding epitope tags (FLAG, c-Myc, or hepatitis C virus epitopes) were engineered in the open reading frames of a nonstructural protein (VP5) and the capsid protein (VP2). Attempts were also made to generate recombinant IBDV that displayed foreign epitopes in the exposed loops (PBC and PHH) of the VP2 trimer. We successfully recovered recombinant IBDVs expressing c-Myc and two different virus-neutralizing epitopes of human hepatitis C virus (HCV) envelope glycoprotein E in the VP5 region. Western blot analyses with anti-c-Myc and anti-HCV antibodies provided positive identification of both the c-Myc and HCV epitopes that were fused to the N terminus of VP5. Genetic analysis showed that the recombinants carrying the c-Myc/HCV epitopes maintained the foreign gene sequences and were stable after several passages in vero and 293T cells. This is the first report describing efficient expression of foreign peptides from a replication-competent IBDV and demonstrates the potential of this virus as a vector.

Infectious bursal disease virus (IBDV), a pathogen causing an immunosuppressive disease in chickens (26), has been used as a therapeutic agent without any toxicity in clinical trials with patients suffering from acute and chronic hepatitis C virus (HCV) infections (2, 8). IBDV belongs to the genus *Avibarna*-virus of the *Birnaviridae* family, and its genome consists of two segments of double-stranded RNA (11). The smaller segment, B, encodes VP1, a 97-kDa multifunctional protein with polymerase and capping enzyme activities (21, 27). The larger segment, A, encodes a 110-kDa precursor polyprotein in a single large open reading frame (ORF) which is cotranslationally processed by the viral protease VP4 (4, 24) into the VP2 precursor (pVP2), VP3, and VP4. pVP2 is further processed by several proteolytic cleavages at its C terminus for conversion into mature VP2 (10). Segment A also encodes VP5, a 17-kDa nonstructural (NS) protein, in a small ORF partly preceding and overlapping the polymerase ORF. VP5 is dispensable for viral replication in vitro and in vivo (29), which makes it a prime candidate for the construction of marked vaccines carrying deletions. These marked vectors could be easily distinguished from the wild-type virus and could also trigger a specific cellular immune response in the host species. The available structural data for VP2 (7, 14, 17) reveal that the protein is folded into three different domains (base B, shell S, and projection P). Expression of VP2 by itself leads to dodecahedral subviral particles (SVPs) containing 20 VP2 trimers (6) and exposing the four loops of the P domain (named PBC, PDE, PFG, and PHH). Here, we explore the possibility of displaying foreign epitopes stably in recombinant IBDV by either inserting or replacing sequences in the PBC and PHH loops of VP2.

In this study, we used a 10-amino-acid linear c-Myc epitope (EQKLISEEDL) derived from the C terminus of human c-Myc protein and an 8-amino-acid linear FLAG epitope (DY KDDDDK). c-Myc and FLAG epitope tags were selected as they are well characterized and are recognized by specific monoclonal antibody (MAb) Myc1-9E10 (12) and MAb M2 (5), respectively. These epitope tags allow for systematic determination of sites potentially amenable to insertions or substitutions that are tolerated by the virus during assembly. The specific sites for insertion/substitution of c-Myc or FLAG sequences within segment A were chosen to investigate the following: (i) insertion/substitution of epitopes at sites that are exposed on the surface of the virus (the loops); (ii) substitution, which does not dramatically alter the size or length of segment A (N terminus of the VP5 or VP2 protein), rather than insertion; or (iii) insertion of the tag at the N terminus of VP5 or VP2, which would increase the length of segment A by 30 nucleotides (nt), assuming that it does not interfere in viral packaging. We further explored the vector potential of IBDV by inserting or substituting HCV envelope glycoprotein E2 epitopes, amino acid residues 523 to 535 [HCV(523–535)] and 412 to 419 [HCV(412–419)], which induce broadly neutralizing anti-HCV antibodies, in VP5 and the external loops of VP2. Consequently, we investigated a series of modifications made in segment A of the IBDV to determine the feasibility of expressing exogenous epitopes.

*Generation of recombinant IBDV carrying foreign epitopes.* Construction of the full-length cDNA clones of IBDV segments A and B of strain D78 has been described previously.
(19), and these clones were used as templates to generate pIBDVA and pIBDVB plasmids. The genome fragments were amplified using the respective primers, as shown in Table 1, and the segments were fused to the cytomegalovirus (CMV) promoter transcription start site of the pCI vector (Promega) at their 5' ends and a hepatitis delta virus (HDV) ribozyme sequence at their 3' ends, as described previously (3). The integrity of the plasmid DNA was verified by sequencing, and the proper clones were used for further manipulations. Ten different constructs of IBDV segment A were created by inserting or substituting various foreign sequences in the VP5 or VP2 region, as shown in Fig. 1. First, we replaced the nucleotides encoding the N termini of VP5 (nt 100 to 129) and VP2 (nt 134 to 163) with 30 nucleotides of a c-Myc sequence, thus generating plasmids pIBDV-1 and pIBDV-2, respectively. Second, we inserted the c-Myc sequence between nt 99 and 100 (for pIBDV-3) and nt 133 and 134 (for pIBDV-4) of segment A. We also inserted HCV(523–535) and HCV(412–419) sequences with 1 μg each of a plasmid carrying segment A and a plasmid carrying segment B (pIBDVA and pIBDVB). Successful virus recovery was achieved when cells were cotransfected with the plasmid carrying segment B and with the constructs pIBDVA, pIBDV-3, pIBDV-5, and pIBDV-6 (Table 2), yielding IBDV, IBDV-3, IBDV-5, and IBDV-6, respectively. Generated viruses were passaged further in Vero cells to generate the stock viruses.

**Analysis of the recovered viruses.** The recovered viruses were characterized by both immunofluorescence and Western blotting analyses. Vero cells infected with IBDV and IBDV-3 were incubated with rabbit anti-IBDV serum and mouse c-Myc MAb (Sigma), respectively, and cells infected with IBDV-5 and IBDV-6 were incubated with HCV polyclonal antibody (MyBioSource, CA); cells were then stained with fluorescein-conjugated secondary antibody. The IBDV polyclonal antibody (Sigma) reacted with viral antigens in mock-infected or IBDV-infected controls (Fig. 2). Similarly, the anti-c-Myc MAb (Sigma) reacted with viral antigens in IBDV-3-infected cells but not in IBDV-5- and IBDV-6-infected cells. In contrast, the anti-c-Myc MAb readily detected viral antigens in IBDV-3-infected cells but not in mock-infected or IBDV-infected controls (Fig. 2). Similarly, HCV polyclonal antibody reacted with viral antigens in IBDV-5- and IBDV-6-infected cells but not in mock-infected or IBDV-infected controls. Western blot analyses of infected Vero cell lysates with anti-IBDV polyclonal antibody, c-Myc MAb, and HCV polyclonal antibody also confirmed the ex-
pression of c-Myc (fused to VP5) and HCV epitopes by the recovered viruses (Fig. 3). The recovery of the viruses was further confirmed by reverse transcription-PCR (RT-PCR) analysis of viral RNA template. Total cellular RNA from infected and mock-infected cells was extracted and analyzed by RT-PCR. Sequence analysis of the RT-PCR products confirmed the presence of desired alterations in segment A of the generated IBDV-3, IBDV-5, and IBDV-6 viruses. Taken together, these results suggest that IBDV can stably sustain the insertion of small foreign epitopes in VP5 protein without interference in assembly or virus attachment/entry.

**Growth kinetics and genetic stability of the recovered viruses.** To compare the replication kinetics of the recovered viruses, Vero cells were infected with IBDV, IBDV-3, IBDV-5, and IBDV-6 at a multiplicity of infection (MOI) of 1.0. Infected cell cultures were harvested at different time points, and the titer of infectious virus present in the culture was determined by a focus-forming assay. Briefly, Vero cells were infected with different dilutions of recovered viruses and incubated for 1 h at 37°C. After incubation, the cells were rinsed, overlaid with Dulbecco’s modified Eagle medium–5% fetal calf serum, and incubated further at 37°C. After 24 h, the cells were fixed with methanol acetone (1:1), incubated with anti-IBDV polyclonal rabbit antiserum for 1 h, and stained with fluorescein-labeled secondary antibody and foci were counted by using fluorescence microscopy with a Zeiss Axiosplan microscope. The results showed that the kinetics and magnitude of replication for IBDV-3 were very similar to those for the wild-type IBDV and that the final virus yields in Vero cells were comparable. However,
IBDV-5 and IBDV-6 showed a slight delay in growth and had titers 1 log lower than IBDV (Fig. 4). To determine the genetic stability of the transfectant viruses in vitro, the viruses were propagated in Vero cells (up to 5 passages), total RNA was isolated, and the region corresponding to the modified portion of VP5 was amplified by RT-PCR. Sequence analysis of the RT-PCR product confirmed the expected modifications in the VP5 genes of the recovered viruses. The stability of the recombinant viruses expressing foreign epitopes was further confirmed by immunofluorescence and Western blot analyses of the cell lysates.

The ability of IBDV to propagate in primate cells (16) suggests that IBDV might be capable of replication in humans. Additionally, replication of IBDV in human cells will establish its potential to be used as vectors for prophylactic purposes.

With this objective, we infected HEK 293 cells, a specific cell line originally derived from human embryonic kidney cells, with IBDV, IBDV-5, and IBDV-6, and virus replication was confirmed by an immunofluorescence assay (Fig. 2) and Western blot analysis (Fig. 3).

The use of recombinant viral vaccines is a relatively novel and promising approach to combating infectious diseases in humans as well as in veterinary medicine. An efficient viral vector is expected to provide preferentially stable and long-term transgene expression. Several viral systems, including hepatitis B virus, poliovirus, Newcastle disease virus, adenovirus, and influenza virus, have been used as vectors to express foreign epitopes and induce protective immunity against unrelated pathogens (15, 18, 20, 25, 28). Previous studies have shown that vaccination of humans with short synthetic HCV

### Table 2. Recovery of infectious viruses using different IBDV segment A constructs

<table>
<thead>
<tr>
<th>Construct name</th>
<th>Description or change in segment A</th>
<th>Recovery result</th>
</tr>
</thead>
<tbody>
<tr>
<td>pIBDVA</td>
<td>Strain D78 segment A</td>
<td>+</td>
</tr>
<tr>
<td>pIBDV-1</td>
<td>Replacement of 5’ terminus of VP5 coding sequence (nt 100–129) with c-Myc sequence</td>
<td>–</td>
</tr>
<tr>
<td>pIBDV-2</td>
<td>Replacement of 5’ terminus of VP2 coding sequence (nt 134–163) with c-Myc sequence</td>
<td>–</td>
</tr>
<tr>
<td>pIBDV-3</td>
<td>Insertion of c-Myc sequence at 5’ terminus of VP5 coding sequence (between nt 99 and 100)</td>
<td>+</td>
</tr>
<tr>
<td>pIBDV-4</td>
<td>Insertion of c-Myc sequence at 5’ terminus of VP2 coding sequence (between nt 133 and 134)</td>
<td>–</td>
</tr>
<tr>
<td>pIBDV-5</td>
<td>Insertion of HCV(523–535) epitope at 5’ terminus of VP5 coding sequence (between nt 99 and 100)</td>
<td>+</td>
</tr>
<tr>
<td>pIBDV-6</td>
<td>Insertion of HCV(412–419) epitope at 5’ terminus of VP2 coding sequence (between nt 99 and 100)</td>
<td>+</td>
</tr>
<tr>
<td>pIBDV-7</td>
<td>Mutation and insertion of FLAG epitope in P5c loop of VP2 (corresponding to nt 794–800)</td>
<td>–</td>
</tr>
<tr>
<td>pIBDV-8</td>
<td>Mutation and insertion of HCV(523–535) epitope in P5c loop of VP2 (corresponding to nt 794–800)</td>
<td>–</td>
</tr>
<tr>
<td>pIBDV-9</td>
<td>Substitution of FLAG epitope in P5 loop of VP2 (corresponding to nt 1076–1100)</td>
<td>+</td>
</tr>
<tr>
<td>pIBDV-10</td>
<td>Substitution of HCV(412–419) epitope in P5 loop of VP2 (corresponding to nt 1076–1100)</td>
<td>–</td>
</tr>
</tbody>
</table>

Amino acid sequences of epitopes were as follows: c-Myc epitope, EQKLISEEDL; FLAG epitope, DYKDDDDK; HCV(523–535) epitope, GAPTYSWGANBTDV; and HCV(412–419) epitope, QLINTNGS. Vero cells were transfected with various IBDV segment A constructs, plus segment B.

Results for recovery of virus are denoted as + (virus was recovered) and – (no virus was recovered).
peptides has generated both humoral and cellular immunity (13, 30, 31). In the present study, we explored the potential utility of IBDV to carry foreign epitopes with the aim of developing a safe and efficient viral vector platform. Using a plasmid-based reverse genetics system, we generated a recombinant IBDV (IBDV-3) expressing a c-Myc epitope by introducing the epitope sequence into the VP5 coding region of IBDV, thereby increasing the length of genome segment A by 30 nucleotides. After the recovery of IBDV-3, we further explored the VP5 region by inserting the hepatitis C virus epitopes [HCV(523–535), GAPTYSWGANDTDV, and HCV(412–419), QLINTNGS] and successfully recovered the viruses harboring the HCV epitopes, thus increasing the length of segment A by 42 and 24 nucleotides, respectively. We further explored the VP5 region by inserting the M2e gene (encoding the sequence SLLTEVETPIRNEWGCRCNDSS) from influenza type A but were unsuccessful in recovering this virus (data not shown). We speculate that the reason for the failure...
to recover the virus with the flu sequence inserted into VP5 may be the size of the epitope. The coding sequence is 66 nucleotides, longer than the c-Myc or HCV epitope sequence, and the longer foreign sequence may have hindered the efficient packaging of the IBDV virus. This indicates the limitation of IBDV in its intolerance of longer foreign sequences, as well as the importance of the amino acid sequences selected for insertion, which may interfere with protein folding, assembly, or replication of the IBDV genome. Based on the crystal structure of VP2, we also explored insertion into the P<sub>nc</sub> and P<sub>nt</sub> loops but failed to recover any recombinant virus. Recently, it was shown that the foot-and-mouth disease virus (FMDV) immunodominant epitope could be effectively inserted into the P<sub>nc</sub> loop of IBDV to produce IBDV SVPs with chimeric VP2.
an immunodominant epitope on the nucleoprotein gene of NDV can be deleted or replaced by a foreign epitope. J. Virol. 76:10138–10146.


