EDITORIAL


With the untimely, sudden passing of Robert Weisberg on 1 September 2011, the bacteriophage community lost a shining light. Bob had a remarkable career and served his profession exceptionally well. He was an editor of the Journal of Virology (1983 to 1988) and the Journal of Bacteriology (1985 to 1995) and worked tirelessly to advance bacteriophage biology. He was my mentor when I was a Staff Fellow at the NIH in the mid-1970s. His long-time collaborator and colleague, Max Gottesman, has prepared a tribute to this stellar virologist.

Lynn W. Enquist
Editor in Chief, Journal of Virology

IN MEMORIAM

Our friend and colleague Robert Weisberg passed away suddenly on 1 September 2011. Bob was a pioneer in the study of the bacteriophage lambda. His research touched on most areas of temperate phage physiology. He made seminal contributions to our understanding of how lambda integrates into the Escherichia coli chromosome, beginning with the key observation that the bacterial and phage attachment sites had distinct recombination properties. He generated the first library of gene clones using lambda transducing phages, following his finding that deletion of the bacterial attachment site allowed lambda to integrate at many other locations in the bacterial chromosome and then excise carrying the adjacent genes. He helped define the mechanism of the lambda Int protein and performed a lovely analysis of the nature of the lambda attachment site. More recently, he discovered a novel mechanism of transcription regulation. The lambdoid phage, HK022, like lambda, suppresses transcription termination on its chromosome. Unlike lambda, it does not carry a dedicated protein such as IN. With his colleagues Rodney King and Natasha Komissarova, Bob showed that an HK022 nascent transcript converts RNA polymerase into a termination-resistant form.

He also knew his wines and could discuss their particularities with authority. He mentored, among others, Nat Sternberg, Lynn Enquist, and Kaz Shimada, who went on to establish highly productive laboratories. He leaves behind a substantial scientific legacy that, taken together, established lambda as a model system for the study of recombination and gene control and an important tool for bacterial genetics. And those who knew him personally feel that he enriched their lives and that an era has ended with his passing.

Robert A. Weisberg 1937–2011

His exploration of this regulatory system was a beautiful amalgam of biochemical and genetic approaches, and he was highly proficient in both disciplines.

Bob spent most of his career at the NIH, and he retired as Chief of Microbial Genetics at the National Institute of Child Health and Human Development in 2008. Of course, he didn’t give up benchwork entirely and continued to pursue studies of transcription regulation in phages as a Scientist Emeritus at the National Cancer Institute until the time of his death.

Bob was a wonderful colleague; he shared freely his innovative ideas with others, had no issues with authorship, and welcomed the success of others—in short, a model citizen/scientist.

He published ahead of print on 5 October 2011.