Deficiency of Niemann-Pick Type C-1 Protein Impairs Release of Human Immunodeficiency Virus Type 1 and Results in Gag Accumulation in Late Endosomal/Lysosomal Compartments

Yuyang Tang, 1, # Ihid Carneiro Leao, 2, # Ebony M. Coleman, 1 Robin Shepard Broughton, 1 and James E. K. Hildreth 1, 2*

Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, Tennessee 37208, 1 and Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 2

Received 4 February 2009/Accepted 20 May 2009

Human immunodeficiency virus type 1 (HIV-1) relies on cholesterol-laden lipid raft membrane microdomains for entry into and egress out of susceptible cells. In the present study, we examine the need for intracellular cholesterol trafficking pathways with respect to HIV-1 biogenesis using Niemann-Pick type C-1 (NPC1)-deficient (NPCD) cells, wherein these pathways are severely compromised, causing massive accumulation of cholesterol in late endosomal/lysosomal (LE/L) compartments. We have found that induction of an NPC disease-like phenotype through treatment of various cell types with the commonly used hydrophobic amine drug U18666A resulted in profound suppression of HIV-1 release. Further, NPCD Epstein-Barr virus-transformed B lymphocytes and fibroblasts from patients with NPC disease infected with a CD4-independent strain of HIV-1 or transfected with an HIV-1 proviral clone, respectively, replicated HIV-1 poorly compared to normal cells. Infection of the NPCD fibroblasts with a vesicular stomatitis virus G-pseudotyped strain of HIV-1 produced similar results, suggesting a postentry block to HIV-1 replication in these cells. Examination of these cells using confocal microscopy showed an accumulation and stabilization of Gag in LE/L compartments. Additionally, normal HIV-1 production could be restored in NPCD cells upon expression of a functional NPC1 protein, and overexpression of NPC1 increased HIV-1 release. Taken together, our findings demonstrate that intact intracellular cholesterol trafficking pathways mediated by NPC1 are needed for efficient HIV-1 production.

Human immunodeficiency virus type 1 (HIV-1) is a complex retrovirus highly dependent upon a myriad of cellular mechanisms for successful virus replication. Cholesterol plays a pivotal role throughout the HIV-1 life cycle (23, 40, 41, 64). HIV-1 entry, assembly, and budding processes occur at cholesterol-enriched membrane microdomains known as lipid rafts, and depletion of cellular cholesterol markedly impairs for cell entry (4, 25, 57). Therefore, intracellular cholesterol trafficking pathways that allow nascent HIV-1 particles to acquire lipids appear critical for virus replication.

Recent evidence supports a critical role for cholesterol trafficking and homeostasis in viral replication, showing that the HIV-1 accessory protein Nef increases synthesis and transport of cholesterol to both lipid rafts and progeny virions and induces multiple genes involved in cholesterol synthesis (80, 88). More recent studies have revealed that binding of Nef to the ATP-binding cassette transporter A1 (ABCA1) leads to impairment of ABCA1-dependent cholesterol efflux and an accumulation of lipids within the cell (51).

Mammalian cells acquire cholesterol primarily from endocytozed low-density lipoproteins (LDL). The Niemann-Pick type C-1 (NPC1) protein is well known for its role in intracellular trafficking of LDL-derived free unesterified cholesterol. Dysfunctional NPC1 activity leads to development of NPC disease, a rare, autosomal recessive, neurodegenerative disorder characterized by the massive accumulation of cholesterol and glycosphingolipids in late endosomal/lysosomal (LE/L) compartments (61). In normal cells, endocytozed LDLs are delivered to the LE/Ls, where they are hydrolyzed and free cholesterol is released. Homeostasis is achieved when cholesterol is then rapidly transported out of the LE/Ls to the plasma membrane and endoplasmic reticulum (ER) (17, 19, 42, 73, 85), or first to the trans-Golgi (TG) network (TGN) and then to the ER (76).

In NPC1-deficient (NPCD) cells, the cholesterol does not exit the endocytic pathway, resulting in its accumulation within LE/L structures.

In 95% of NPC patients, the disease is caused by mutations in the NPC1 gene, while the remaining 5% harbor mutations in the NPC2 gene (50, 72, 79). One of the most frequently found and extensively characterized NPC1 mutations is the I1061T mutation (37, 38, 86). This mutation results in misfolding of the NPC1 protein, leading to its degradation and causing an 85% decrease in cellular NPC1 expression (20). Cells with such low levels of functional NPC1 maintain only 38% of normal sphin-
NPD1 is required for HIV replication

MATERIALS AND METHODS

Reagents, plasmids, and antibodies. U18666A (3-[2-(diethylamino)ethoxy]-1,2,4-
triazol-5-en-17-one, HC3) was purchased from Biomol (Plymouth Meeting, PA). Filipin was supplied by Sigma Chemical Co. (St. Louis, MO). The plasmids used for the pseudovirus production (pNL4.3-Luc-R-E plasmid and pHEF-VSVG) were generous gifts from Janice Clements (Johs Hopkins University, Baltimore, MD). pEGFP was a kind gift from Carolyn Machamer (Johs Hopkins University, Baltimore, MD). pNL4.3 was obtained from Malcolm Martin through the NIH AIDS Reference and Reagent Program. The HIV-1 Gag expression plasmid was kindly provided by Stephen Gould (Johs Hopkins University, Baltimore, MD). The expression construct for human NPC1 was obtained from Ourgene (Rockville, MD). The mouse NPC1 cDNA construct and Rab9 plasmid were generous gifts from M. P. Scott and Suzanne Pfeffer, respectively (Stanford University, Stanford, CA). This NPC1 construct consists of the mouse NPC1 cDNA inserted into a pEGFP-N3 backbone (Clontech, Palo Alto, CA). Monoclonal antibodies against Gag (GagM1, CD91, and CD63), anti-HA (Roche), and a rabbit anti-Gag polyclonal antibody used in the study were generated in our laboratory. Commercially available antibodies against NPC1 (Novus Biologicals), green fluorescent protein (GFP) (Clontech), β-tubulin (Santa Cruz Biotechnology, Inc., Santa Cruz, CA), and actin (Sigma, St. Louis, MO) were used for the immunoblotting experiments. Secondary antibodies (goat anti-mouse Fc or heavy- and light-chain specific, fluorescein isothiocyanate [FITC] conjugated, horseradish peroxidase goat anti-rabbit Fc specific) were obtained from Jackson ImmunoResearch Laboratories (Westgrove, PA). Lysotracker Red DND-99 was obtained from Invitrogen (Eugene, OR). Pharmaceutical-grade 2OHpCD (Trapsoll; molecular weight of ~1,483 to 1,657) was obtained from CTD, Inc. (Gainesville, FL).

Cells. The reporter cell line LuSIV, derived from the CEMX174 cell line, was produced in our laboratory in collaboration with Janice Clements (67). Jurkat T cells were obtained from the American Type Culture Collection (Rockville, MD) and cultured in complete RPMI (rRPMI) medium with 10% fetal calf serum (FCS). TZM-bl HIV-1 indicator cells, a derivative of HeLa cells and obtained from the NIH AIDS Research and Reference Reagent Program (Germantown, MD), were maintained in Dulbecco modified Eagle medium supplemented with 10% FCS. Epstein-Barr virus (EBV)-transformed B lymphocytes and primary fibroblasts, from the same patient carrying a mutation in the NPC1 protein, and normal fibroblasts (GM0124, GM0312, and GM0569) were obtained from Coriell Repositories (Coriell Institute for Medical Research, Camden, NJ). The EBV-transformed B lymphoblasts were maintained in RPMI 1640 (Gibco-BRL/ Life Technologies, Gaithersburg, MD) supplemented with 10% FCS, 10 mM HEPES (pH 7.2), 20% FCS (crPMB) (HyClone, Logan, UT). EBV-transformed lymphoblasts from healthy donors, established in our laboratory, were maintained under the same culture conditions. Fibroblasts were maintained in Dulbecco modified Eagle medium (Gibco-BRL/Life Technologies, Gaithersburg, MD) supplemented with 10% FCS, 10 mM HEPES (pH 7.2), 20% FCS (crPMB) (HyClone, Logan, UT). Cell viability was assessed by flow cytometry using 7-amino-actinomycin D (Molecular Probes, Eugene, OR) and by trypan blue exclusion methods.

Viruses. HIV-1 was purified from culture supernatants of infected cells by ultracentrifugation through a sucrose cushion, as previously described (23). Stocks of HIV-1MN were obtained from the NIH AIDS Research and Reference Reagent Program. Purified HIV-1MN was obtained from ABL (Advanced Bio-
techologies, Columbia, MD). CD4-independent HIV strain HxB2-8X was ob-
tained from James Hoxie (University of Pennsylvania, Philadelphia, PA) (27), and virus stocks were produced in SupT1 cells. Vesicular stomatitis virus (VSV G)- pseudotyped HIV-1 was prepared from 293T cells by transfection with the cloned pNL4.3 plasmid in combination with the VSV G expression vector pHEF-VSVG using Lipofectamine (Invitrogen, Carlsbad, CA) per the manufacturer's instructions. The culture supernatant containing virus particles was harvested 48 h later and either used for infection directly or concentrated by pelleting at 14,000 rpm for 3 h with or without a 20% sucrose cushion (Beckman SW28i); virion pellets were resuspended in phosphate-buffered saline (PBS).
Infections and transfections. LuSIV (2 × 10^5 cells/ml), Jurkat (5 × 10^5 cells/ml), and TZM-bl (2 × 10^5 cells/ml) cells were incubated in the presence or absence of various concentrations of U18666A for 24 to 48 h and then infected with various concentrations of HIV-1 (normalized by p24) for 48 h, also in the presence or absence of U18666A at the same concentration as that used in pretreatment. Normal and NPCD lymphoblasts were plated at 2 × 10^5 cells/ml and infected overnight with HIV-1×g, virus at increasing multiplicities of infection. The following day, the cells were washed to remove residual virus and cultured in fresh media. Normal and NPCD fibroblasts were plated at 2 × 10^5 cells/ml and infected overnight with 3 μg of VSV G–HIV-1. Cells were then washed to remove residual virus and cultured in fresh media. Normal and NPCD fibroblasts were transfected with full-length proviral DNA clone pNL4.3, or with a human NPC1 construct using the human dermal fibroblast Nucleofector system (Amaxa, Gaithersburg, MD) per the manufacturer’s instructions. TZM-bl cells were transfected with pNL4.3, mouse NPC1-pEGFP, Gag, and/or pEGFP plasmids at different molar ratios using Lipofectamine (Invitrogen, Carlsbad, CA) per the manufacturer’s instructions. Infection and transfection efficiencies were determined using flow cytometry. Briefly, cells were fixed with 2% paraformaldehyde, permeabilized using 0.1% saponin, and then stained with the mouse KC37-FITC anti-p24 antibody (Beckman Coulter, Inc., Fullerton, CA) or an isotype-matched negative control. Stained cells were analyzed using a Beckman FACSCalibur flow cytometer equipped with Cell Quest Software. Viral infection and transfection rates were expressed as percentages of cells staining positively with the p24 antibody.

Cell staining. For cholesterol staining, cells were grown on 35-mm glass-bottom dishes (MatTek Corporation, Ashland, MA) under normal growth conditions and then fixed in 2% paraformaldehyde in PBS for 15 min. The cells were then washed with PBS containing 0.1% NaN_3 and postfixed in 0.1 M cacodylate buffer containing 1% reduced OsO_4, 1% glutaraldehyde, 2% paraformaldehyde, and 10% sucrose. The cells were washed two times with PBS and immersed in 0.1 M cacodylate-HCl buffer for 1 h at 4°C. The cells were then dehydrated in a series of ethanol (50%, 70%, and 80%) and then incubated in methanol for 30 min. After air-drying, the cells were treated with 0.1% (w/v) uranyl acetate and postfixed in 0.1 M cacodylate buffer containing 1% OsO_4. The cells were then washed, put in fresh serum-free medium, and incubated at 4°C for 1 h, as previously described (41). The cells were then treated with 0.05% uranyl acetate, dehydrated, and embedded in Epon 812. Sections of ultrathin sections were stained with lead nitrate. Micrographs were taken on a Philips CM 10 transmission electron microscope (Philips Science, Mahwah, NJ), and images were processed with Adobe Photoshop (Adobe Systems, Inc., Mountain View, CA).

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblotting. Cell lysates were prepared by adding 250 μl of NP-40 lysis buffer (0.05 M Tris, pH 7.5, 0.1 M NaCl, 0.002 M EDTA, 1% NP-40) and one protease inhibitor tablet per 25 ml; Roche catalogue no. 1873580) to the cell monolayer after infection or transfection. After quantifying the total amount of protein present in the cell lysate using a bicinchoninic acid protein assay kit (Pierce- Rockford, IL), equivalent amounts of protein were then loaded onto 10% or 4 to 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis gradient gels (NuPAGE Novex Bis-Tris gels; Invitrogen). Proteins were transferred onto a Hybond-P polyvinylidene difluoride membrane (Amersham Biosciences, NJ) according to standard procedures. The membranes were blocked in 5% Krabase blocking agent (Amersham Biosciences, NJ) in PBS with 0.1% Tween and then probed with Gag antibody and anti-NPC1 antibodies at a 1:500 dilution. The membranes were then incubated with horseradish peroxidase-conjugated, anti-mouse (1:10,000) or anti-rabbit (1:10,000) immunoglobulin G secondary antibodies (Promega, San Luis Obispo, CA) and developed using enhanced chemiluminescence (Amersham Biosciences, NJ). Bands were visualized using Kodak BioMax MR film. Virus lysates were generated from virions containing supernatant and concentrated by pelleting and resuspending them in NP-40 lysis buffer. Loading volume for viral lysates was normalized based on the cell lysate protein amount.

20HppCD treatment. NPCD and normal fibroblasts were infected with VSV G/pNL4.3. Four days later, cells were washed and treated with 3% 2OHp and 20HppCD in serum-free medium for 1 h at 37°C, as previously described (41). The cells were then washed, put in fresh serum-free medium, and incubated at 37°C. Supernatant was collected at different time points, and the amount of Gag in the supernatant was quantified by a p24 ELISA.

RESULTS

U18666A treatment of cells causes cholesterol accumulation and inhibits HIV-1 production. To examine the degree to which productive HIV–1 infection relies on intracellular cholesterol trafficking pathways, HIV-1×g-infected LuSIV cells were treated with U18666A. A class 2 amphiphilic hydrophobic amine, U18666A interferes with intracellular cholesterol transport through inhibition of desmosterol reductase, the enzyme responsible for reducing desmosterol to cholesterol in the cholesterol biosynthetic pathway (6, 62). It also inhibits an additional component involved in cholesterol synthesis, oxidosqualene cyclase (13, 70). This well-studied compound has been shown to induce an NPC disease-like phenotype, with respect to cholesterol accumulation in normal cells (55, 60, 66).

Infected LuSIV cells were incubated with increasing concentrations of U18666A for 48 h and then stained with filipin to examine cholesterol distribution using fluorescent microscopy.
There was no toxicity associated with U18666A treatment of the infected cells, as determined by trypan blue exclusion and 7-amino-actinomycin D staining (data not shown). Induction of the NPC disease phenotype was observed with the U18666A-treated cells in a dose-dependent fashion without the need for prior cholesterol depletion. Cholesterol redistribution was evident at the lower concentration of 0.25 μg/ml (less than 0.5 μM), while at the higher U18666A concentration, the NPC disease phenotype was even more pronounced.

LuSIV cells, derived from the CEMx174 hybrid T-cell/B-cell line, contain a luciferase reporter gene and support replication of both HIV-1 and simian immunodeficiency virus isolates (67). To test the effects of the U18666A compound, with respect to HIV-1 infection, virus replication in the HIV-1MN+ infected LuSIV cells in the presence of the compound at the pretreatment concentration. Virus replication was measured using a luciferase assay. The data shown represent the mean ± standard deviation from three independent experiments.
with lower virus yield. In U18666A-treated TZM-bl cells infected with either 2.2 ng (filled) or 1.1 ng (open) of HIV_{xs}. At 4, 6, and 11 days postinfection, RT activity in the supernatant was measured. The results shown are the means of five independent experiments. (B) Total cell number was determined for each of the infected cell populations represented in panel A at the same time points after infection. The results shown are the mean of five independent experiments. (C) Normal and NPCD lymphoblasts were infected with 2.2 ng of HIV_{xs}. At 30 days postinfection, the amount of Gag released into the supernatant was measured by a standard p24 ELISA. The relative amounts of Gag are the percentage of normal cells infected with the same amount of virus (arbitrarily set as 100%). The results shown represent the mean ± standard deviation from three independent experiments. **, *P* < 0.001, compared to infected normal lymphoblasts. (D) Normal (black bars) and NPCD (white bars) lymphoblasts were infected with 2.2 ng of HIV_{xs}. At 15 days postinfection, virus-containing supernatants were collected and purified. Virus produced from each cell type was normalized by p24, and comparable amounts were used to infect Jurkat cells. The amount of Gag released by the Jurkat cells into the supernatant was measured by a standard p24 ELISA. The results shown represent the mean ± SD from three independent experiments. (E) Relative levels of HIV-1ERT were quantified by real-time PCR in HIV_{xs}-infected normal (black bars) and NPCD (white bars) lymphoblast cells at the indicated time points. The relative ERT is normalized to normal cells (arbitrarily set as 1). The results shown represent the mean ± standard deviation from three independent experiments.

FIG. 2. HIV-1 replication is suppressed in NPCD lymphoblasts. (A) Normal lymphoblasts (circles) and NPCD lymphoblasts (triangles) were infected with either 2.2 ng (filled) or 1.1 ng (open) of HIV_{xs}. At 4, 6, and 11 days postinfection, RT activity in the supernatant was measured. The results shown are the means of five independent experiments. (B) Total cell number was determined for each of the infected cell populations represented in panel A at the same time points after infection. The results shown are the mean of five independent experiments. (C) Normal and NPCD lymphoblasts were infected with 2.2 ng of HIV_{xs}. At 30 days postinfection, the amount of Gag released into the supernatant was measured by a standard p24 ELISA. The relative amounts of Gag are the percentage of normal cells infected with the same amount of virus (arbitrarily set as 100%). The results shown represent the mean ± standard deviation from three independent experiments. **, *P* < 0.001, compared to infected normal lymphoblasts. (D) Normal (black bars) and NPCD (white bars) lymphoblasts were infected with 2.2 ng of HIV_{xs}. At 15 days postinfection, virus-containing supernatants were collected and purified. Virus produced from each cell type was normalized by p24, and comparable amounts were used to infect Jurkat cells. The amount of Gag released by the Jurkat cells into the supernatant was measured by a standard p24 ELISA. The results shown represent the mean ± SD from three independent experiments. (E) Relative levels of HIV-1ERT were quantified by real-time PCR in HIV_{xs}-infected normal (black bars) and NPCD (white bars) lymphoblast cells at the indicated time points. The relative ERT is normalized to normal cells (arbitrarily set as 1). The results shown represent the mean ± standard deviation from three independent experiments.
nant of the HIV-1/IIIB strain of virus, HIV_{8X} is capable of productively infecting CD4-negative cells through CXCR4 co-receptor utilization (27). Both lymphoblast lines were infected to comparable levels, as determined by monitoring viral ERT products using real-time PCR (Fig. 2E) and intracellular Gag levels using flow cytometry (data not shown).

Virus production was quantified by two methods: the levels of RT activity in the supernatant measured over time and the extracellular levels of Gag measured as an indicator of virus release. By 11 days after infection, there was 10 times less RT activity present in the culture supernatant of the HIV_{8X}-infected NPCD lymphoblasts compared to the infected normal lymphoblasts (Fig. 2A). Proliferation rates for the infected NPCD cells were higher than those for the normal cells after infection (Fig. 2B). This could be a result of the limited spread of infection, as the infected NPCD cells exhibited markedly less cytopathic effect compared to the infected normal cells, which displayed classical hallmarks of HIV infection, such as syncytia formation and ballooning (data not shown).

Nonetheless, the decrease in RT activity in the NPCD cells became even more apparent when normalized by cell number. Four days after infection, RT activity detected in the culture supernatant from the infected NPCD cells was five times less than that measured from the infected normal cells upon normalization. An analysis of the amount of Gag present in the supernatant from infected cells revealed that by 30 days after infection there was a greater than 90% decrease in virus released from the NPCD lymphoblasts compared to the normal lymphoblasts (Fig. 2C).

To investigate the reasons why virus production in the NPCD lymphoblasts was limited, we tested the ability of progeny virions released from the HIV_{8X}-infected NPCD cells to infect susceptible cells. To achieve this, normal and NPCD lymphoblasts were infected with HIV_{8X}, and at 20 days after infection, the cells were analyzed by transmission electron microscopy (Fig. 3). As controls, noninfected normal and noninfected NPCD lymphoblasts were also examined. As expected, the noninfected NPCD cells exhibited classical hallmarks of NPC disease, including accumulation of multilamellar bodies and an abundance of L structures (Fig. 3B and C), neither of which were observed with the normal cells (Fig. 3A). Upon infection, both immature and mature viral particle budding events were observed at the plasma membrane in the normal lymphoblasts (Fig. 3D). In contrast, we did not observe progeny virions budding with normal morphology from the infected NPCD lymphoblasts, neither at the plasma membrane nor intracellularly (Fig. 3E and F).

The infected NPCD cells exhibited large vacuoles which showed no discernible budding events. This finding clearly demonstrates abnormal HIV-1 assembly in the absence of NPC1 function in lymphoblasts and may explain the poor infectivity of the viral particles released from these cells.

Inhibition of HIV-1 production in NPC1-deficient cells after a single cycle of infection or transfection is accompanied by normal levels of intracellular HIV-1 Gag. To further investigate the effects of the NPC1 mutation on HIV-1 replication, we...
utilized a single-cycle HIV-1 virus pNL4.3 bearing the VSV-G protein on its surface to facilitate efficient infection. Normal (black bars) and NPCD B-lymphoblast (white bars) cells were infected with indicated concentrations of VSV-G HIV-1. RT activity in the supernatant was quantified after 48 h. (B) Normal and NPCD fibroblasts were infected with VSV-G HIV-1 (2 to 3 μg p24/10^6 cells). Gag antigen release into the supernatant was also measured by an antigen-capture ELISA. The results shown represent the mean ± standard deviation from three independent experiments. *P < 0.05, compared to infected normal fibroblasts. (D) NPCD and normal fibroblasts were transfected with a Gag expression vector. 48 h posttransfection, the amount of Gag released into the supernatant was measured by a standard p24 ELISA. Viral release data shown are normalized to percentages of infected/transfected cells, as determined by flow cytometry using anti-Gag antibody. The relative amounts of Gag are percentages of transfected normal cells (arbitrarily set as 100%). (E) Cells infected as described for panel B. After 96 h of infection, whole-cell lysates (upper three panels) and viral lysates (lower panel) were harvested and analyzed by immunoblotting using anti-Gag, anti-NPC1, and anti-β-tubulin antibodies. Data shown represent the mean ± standard deviations from three independent experiments. *P < 0.05 ** P < 0.001, compared to normal cells (A, B, C, and D).

FIG. 4. Dominant inhibition of particle assembly/release in NPCD cells either infected with VSV-G-pseudotyped virus or transfected with a proviral clone and Gag expression vector. (A) The effects of NPCD lymphoblasts on NL4.3 viral particle release with VSV-G-pseudotyped virus infection. Normal (black bars) and NPCD B-lymphoblast (white bars) cells were infected with indicated concentrations of VSV-G HIV-1. RT activity in the supernatant was quantified after 48 h. (B) Normal and NPCD fibroblasts were infected with VSV-G HIV-1 (2 to 3 μg p24/10^6 cells). Gag antigen release into the supernatant was also measured by an antigen-capture ELISA. The results shown represent the mean ± standard deviation from three independent experiments. *P < 0.05, compared to infected normal fibroblasts. (D) NPCD and normal fibroblasts were transfected with a Gag expression vector. 48 h posttransfection, the amount of Gag released into the supernatant was measured by a standard p24 ELISA. Viral release data shown are normalized to percentages of infected/transfected cells, as determined by flow cytometry using anti-Gag antibody. The relative amounts of Gag are percentages of transfected normal cells (arbitrarily set as 100%). (E) Cells infected as described for panel B. After 96 h of infection, whole-cell lysates (upper three panels) and viral lysates (lower panel) were harvested and analyzed by immunoblotting using anti-Gag, anti-NPC1, and anti-β-tubulin antibodies. Data shown represent the mean ± standard deviations from three independent experiments. *P < 0.05 ** P < 0.001, compared to normal cells (A, B, C, and D).

NPCD fibroblasts were obtained from the same patient as the lymphoblasts, and when infected with VSV-G HIV-1, similar findings were observed. Using the standard p24 ELISA to quantify levels of Gag protein in supernatants from cells infected for 96 h, we observed a 60% reduction in the amount of virus released from the infected NPCD fibroblasts compared with normal fibroblasts (Fig. 4B). These results were confirmed when the NPCD fibroblasts were transfected with the pNL4.3 proviral clone, resulting in a 40 to 50% decrease in virus release compared to infected normal cells (Fig. 4C). Additionally, transfecting the NPCD fibroblasts with a Gag expression plasmid resulted in a 70% decrease in Gag release compared to normal cells (Fig. 4D).

Next, we performed a comparative analysis of viral protein production in VSV-G HIV-1-infected normal and NPCD fibroblasts. Infected cell lysates from the two infected cell types were analyzed by immunoblotting for the production of the structural viral protein Gag. Despite the readily apparent difference in the amounts of virus released from these cells, the
NPCD fibroblasts had comparable or slightly elevated levels of cell-associated Gag compared to infected normal cells. There was, however, a significant decrease in virus-associated Gag levels in the infected NPCD fibroblasts compared to the normal cells (Fig. 4E). These data confirm an important role for NPC1 in HIV-1 replication and indicate that the defect in virus replication in the NPCD cells is likely occurring during a late-assembly/release step of the replication cycle.

HIV-1 Gag protein accumulates in LE/L compartments in NPCD cells. Dysfunction in NPC1 protein results in altered intracellular trafficking of host proteins. Proteins that usually cycle from the LEs to the plasma membrane, such as MPR/IGF2, are mistargeted to the LE/L compartment in NPCD cells. Our findings indicate that while viral protein expression levels are normal in the NPCD cells, there is a significant reduction in virus production compared to normal cells. A reasonable explanation for this could be that in the NPCD cells, the viral proteins are trafficking abnormally, as is the case for some cellular proteins.

To determine if there were gross changes to Gag distribution in the absence of NPC1 activity, the localization of Gag was evaluated in normal and NPCD fibroblasts infected with VSV-G HIV-1. At 4 days after infection, the localization of both the Gag protein and either the LE marker CD63 or the L marker LAMP-2 was determined by double-label immunofluorescence, as shown in Fig. 5. In the normal fibroblasts, Gag was primarily diffuse, with some areas of well-organized foci evenly distributed throughout the cell. In these same cells, CD63 was concentrated in discrete puncta in perinuclear regions (Fig. 5A), while LAMP-2 puncta were found throughout the body of the cell (Fig. 5B). In the infected normal fibroblasts there was little or moderate colocalization between Gag and these two cellular proteins that mark the LE/L compartments.

In striking contrast, however, the infected NPCD fibroblasts exhibited a distinct localization of Gag, such that it was much more highly concentrated in the perinuclear area than was that observed with the normal cells. Furthermore, there was strong colocalization between Gag and CD63 proteins, as well as between Gag and LAMP-2 (Fig. 5A and B). The change in the distribution of these two cellular proteins is not surprising, as they both have been found in abundance in membranes of the multilamellar bodies characteristic of NPCD cells (Fig. 3C).

Similar results were also observed when cells were stained with the L dye LysoTracker Red, a weak base that accumulates in acidic compartments. There was strong colocalization between Gag and L compartments in the NPCD cells, while no colocalization was seen with the normal cells (Fig. 5C). Staining the infected NPCD cells with filipin showed Gag accumulating in the same subcellular compartment as the cholesterol (Fig. 5D). Quantitative analysis performed on the intracellular punctate distribution pattern of Gag revealed that CD63 puncta, total intracellular Gag, and Gag-to-CD63 colocalization were significantly increased in VSV-G HIV-1-infected NPCD cells compared to infected normal cells ($P < 0.001$) (Fig. 5E).

There was a strong correlation between total intracellular Gag and Gag colocalized with CD63 in the infected NPCD cells that was not found with infected normal cells ($R^2 = 0.7542$ versus $R^2 = 0.3942$, respectively) (Fig. 5F and G). Taken together, these findings indicate that in the absence of NPC1 function and as a result of the subsequent disruption of intracellular cholesterol trafficking pathways, HIV-1 Gag protein accumulates in LE/L compartments, which may account for the viral production impairment.

Normal HIV-1 biogenesis is restored in NPCD cells upon expression of a functional NPC1 protein, and overexpression of NPC1 increases HIV-1 release. In order to confirm that the NPC1 protein was directly responsible for the effect on HIV-1 replication observed with NPCD cells, we transfected these cells with an NPC1 cDNA vector to restore expression of the protein. Immunoblotting analysis confirmed increased expression of NPC1 after transfection of the NPCD cells. In both the normal and NPCD cells, the NPC1 expression levels increased proportionally from baseline as a consequence of transfection with the HIV-1 proviral clone pNL4.3 compared to nontransfected control cells (Fig. 6A, middle). This is unsurprising, as HIV-1 Nef induces multiple genes involved in cholesterol synthesis and homeostasis (51, 80, 88), and it is possible that it may induce NPC1 expression as well. Comparable levels of cell-associated Gag were observed with the HIV-1-expressing normal and NPCD cells, both in the presence and absence of exogenous NPC1 (Fig. 6A, top). However, virus-associated Gag was still greatly reduced in the NPCD cells (Fig. 6B). When the NPCD cells transfected with NPC1 were tested for their ability to support HIV-1 replication, they were found to release HIV-1 at levels similar to that of control cells (Fig. 6B).

Overexpression of NPC1 has been shown to increase the delivery of cholesterol from endosomal membranes to the plasma membrane (49). We have demonstrated that upon impairment of NPC1 function, despite similar Gag production, Gag release is drastically reduced. If NPC1 regulates the LE transport of Gag, overexpression of NPC1 should increase Gag release. To test this, we expressed NPC1 cDNA along with either a Gag expression plasmid or an HIV-1 full-length lentiviral expression plasmid (pNL4.3). TZM-bl cells were co-transfected with the Gag expression plasmid at a constant viral expression plasmid (pNL4.3). TZM-bl cells were co-transfected with the Gag expression plasmid at a constant concentration and increasing amounts of the NPC1 plasmid. A dose-dependent enhancement of Gag released into the supernatant was detected that correlated with increased levels of NPC1 (Fig. 6C). Moreover, cotransfecting cells with the pNL4-3 and NPC1 plasmids resulted in a threefold increase in particle release relative to pEGFP control-transfected cells (Fig. 6D). Similar results were also observed when 293T cells were used to perform these experiments (data not shown). Taken together, these data confirm that lack of functional NPC1 expression in NPCD cells was responsible for both the NPC1 disease phenotype and restricted HIV-1 release in these cells.

Exposure of cells to 2-hydoxypropyl-β-cyclodextrin (2OHβCD) effectively induces cellular cholesterol efflux. Recently, a study of a mouse model of NPCD showed that suggested 2OHβCD treatments partially reverse the Niemann-Pick disease phenotype (43). Depletion of cholesterol from normal cells with 2OHβCD did not alter viral production over time (data not shown); in contrast, treatment of NPCD cells with 2OHβCD caused a dramatic increase in the level of virus release during 1-h exposure to the compound, and viral release declined to levels similar to those of untreated control cells at 2 h and 24 h posttreatment, presumably due to the metabolic turnover of cholesterol. These results suggest that HIV-1 assembly/release
could be rescued by induced cholesterol efflux. Overexpression of Rab9 in NPCD cells was shown to promote cholesterol and glycosphingolipid clearance (8, 84). However, we observed only a slight increase of virus release with Rab9 overexpression in NPCD cells either infected with VSV G-pseudotyped HIV-1 virus (data not shown) or cotransfected with a proviral clone (data not shown). Confocal microscopy revealed that overexpression of Rab9 in NPCD cells showed the same Gag phenotype as that of control NPCD cells (data now shown). The level of Rab9 expression and viral infection in these cells was deter-

FIG. 5. Colocalization of HIV Gag and LE and L markers in NPCD fibroblasts cells. Primary NPCD and normal fibroblasts were infected with NL4.3-VSV-G-pseudotyped virus. Cells were fixed at 96 h postinfection and immunostained. (A, B, C and D) Gag is shown in green, the LE/L marker in red, cholesterol in blue, and colocalized pixels in yellow or pink. Size bars represent 10 μm. Gag (green) is seen colocalized extensively with LE/L marker (red) CD63 (A), Lamp2 (B), and Lysotracker Red (C) in NPCD cells. (D) Gag (green) is seen colocalized with cholesterol (blue) and CD63 (red) in NPCD cells. Cholesterol was stained with filipin. (E) Quantitation of Gag/CD63 colocalization. The intracellular puncta of Gag, CD63, and Gag colocalizing with CD63 were quantified using Nikon Elements Advanced Research software for 26 NPCD cells and normal cells each. △ represents the puncta count from each cell, and — represents the mean of 26 cells in each group. Correlations between total intracellular Gag puncta and Gag puncta colocalizing with CD63 in normal cells (F) and NPCD cells (G).
mined by flow cytometry analysis (data not shown). These data indicate that Rab9 overexpression does not rescue Gag release in NPCD cells.

DISCUSSION

In this study we observed inhibition of HIV-1 replication in NPCD cells and in normal cells with the U18666A-induced NPCD phenotype. Overexpression of NPC1 in TZM-bl cells enhances HIV-1 release. The role of NPC1 in mediating viral protein trafficking is suggested by the observation of HIV-1 Gag accumulation in LE/L compartments in NPCD cells. NPC1 plays a major role in endocytic transport (35), L cholesterol efflux (42), and fatty acid efflux (9). Given HIV’s need of the LE as a major site for protein sorting, virus assembly, budding, and acquisition of cholesterol critical for HIV assembly and infectivity (40, 41), these observations all support a role for NPC1 in HIV replication.

The NPC1 protein plays a pivotal role in both lipid sorting and vesicular trafficking (9, 35, 42). While NPC1 has been shown to work in a cooperative manner with NPC2 to traffic cholesterol within LE/L compartments (32), there is strong evidence that NPC1 also has a role in vesicular trafficking (29, 56). Live cell imaging studies of normal cells revealed NPC1 emerging from LE/Ls and undergoing rapid vectorial movement toward and away from both the nucleus and plasma membrane (35, 87). Such findings are consistent with the known role of NPC1 in mediating cargo transfer to the ER and plasma membrane (55, 85). In NPCD cells or U18666A-treated cells, the NPC1-mediated vesicular trafficking pathway seems to be paralyzed, as visualized by live cell imaging; in these cells the high-speed NPC1-containing organelles are largely absent (35, 87).

HIV-1 Gag is synthesized in the cytoplasm and then delivered to LEs by AP-3 (12). In some cells, such as macrophages, AP-3-mediated trafficking of Gag to the multivesicular bodies.
effector proteins with small interfering RNA dramatically de-
for HIV-1 replication (53). Reducing expression of Rab9 or its
other effectors that mediate LE-to-TG transport are required
inhibiting its function (18). Notably, Rab9 and TIP47 as well as
on LE membranes due to cholesterol accumulation, thereby
(36). Further observations indicate prenylated Rab9 is trapped
for mannose 6-phospate receptor mistrafficking in NPCD cells
produced evidence that impaired Rab9 function is responsible
effectors TIP47 and p40 (5, 10, 11). Kobayashi et al. have
the TG is coordinated by Rab9 (44, 65) and requires the Rab9
ing. Transport of mannose 6-phospate receptors from LEs to
leaves of the plasma membrane. In NPCD cells, we observed that in addition to Gag, CD63 efflux from endosomes was also blocked, as demonstrated by decreased levels of the protein in the plasma membrane and increased intracellular CD63 levels (Fig. 5E) (as well as measured by flow
cytometry [data not shown]). Impairment of NPC1 function
further increases the colocalization between CD63 and Gag, as
shown in Fig. 5A. This suggests that defects in NPC1-mediated
trafficking results in sequestration of CD63 and Gag in the LE
and implies that these two proteins traffic together via an LE
vesicular pathway for endosome export.

These data also explain the previously recognized high de-
gree of colocalization of these two molecules in normal cells.
Both Gag and CD63 have been shown to transport to LEs via
an AP-3-mediated mechanism (12, 68). Moreover, proper tar-
geting of NPC1 is dependent on AP-3 (2), and Gag has been
shown to interact with the AP-3 β subunit via its MA domain.
It is highly likely that NPC1 binds to AP-3 directly, and it is also
possible that NPC1 and Gag directly interact. It appears that
both NPC1 and CD63 share the same transport routes to the
LE/L compartments as Gag.

An alternative, nonmutually exclusive model accounting for
the role of NPC1 in Gag trafficking and HIV-1 release comes
from observations of Rab9 in NPC1-mediated protein trafficking
and in HIV-1 replication. Rabs are small GTPases involved in
vesicular trafficking through the tethering of donor vesicles
to target membrane (46). Rab9 mediates LE-to-TGN trafficking.
Transport of mannose 6-phosphate receptors from LEs to the
TG is coordinated by Rab9 (44, 65) and requires the Rab9
effectors TIP47 and p40 (5, 10, 11). Kobayashi et al. have
produced evidence that impaired Rab9 function is responsible
for mannose 6-phosphate receptor mistrafficking in NPCD cells
(36). Further observations indicate prenylated Rab9 is trapped
on LE membranes due to cholesterol accumulation, thereby
inhibiting its function (18). Notably, Rab9 and TIP47 as well as
other effectors that mediate LE-to-TG transport are required
for HIV-1 replication (53). Reducing expression of Rab9 or its
effector proteins with small interfering RNA dramatically de-
creases HIV-1 replication. HIV-1 Gag also accumulates in
CD63-positive LE compartments in cells, wherein Rab9 ex-
pression has been suppressed using small interfering RNA
(53). The dysfunction of Rab9 in NPCD cells could, at least in
part, explain our observation of viral HIV assembly/release
defects and Gag accumulation in LE/L compartments.

These observations raise the question as to whether seque-
stration of Gag in the LEs of NPCD cells is simply a result of
Rab9 dysfunction, or whether NPC1 and Rab9 both have a
direct role in mediating Gag and cholesterol transport. Our
current studies show that the Gag accumulation patterns ob-
served in the NPCD cells are different from that seen with the
Rab9-deleted cells (53). In our studies, Gag was found not only
to overlap with CD63 but also overlapped with L markers and
accumulated cholesterol (Fig. 5B to D). This was not the case
with Rab9-deleted cells. Thus, a defect in Rab9 function does
not likely explain the impairment to Gag trafficking and viral
production in NPCD cells. This suggestion is further supported
by the fact that overexpression of Rab9 in NPCD cells, which
has been shown to promote cholesterol and glycosphingolipid
clearance from the NPCD LE/L compartments (8, 84), did not
rescue the virus production or reverse Gag localization to LE/L
compartments (data not shown).

Cholesterol, a major lipid component of the plasma mem-
brane in eukaryotic cells, plays an essential role in maintaining
membrane fluidity and architecture. Within the plasma mem-
brane, cholesterol can segregate with sphingolipids and selec-
tive proteins to form distinct lipid raft complexes that act as
ordered platforms for specific biological functions (71). HIV-1
also has been shown to use lipid rafts for budding and release
(40, 41, 58). Cells tightly control the ratio of cholesterol and
phospholipids in membranes, and this control is essential for
maintaining function of specific proteins. NPC1 protein plays a
pivotal role in endocytic vesicular traffic by regulating move-
ment of lipids and other cargo. In addition to being a cargo of
the pathway, cholesterol itself appears to modulate NPC1 ves-
icle-mediated transport from LE/Ls.

The activities of many integral membrane proteins are mod-
ulated by the physical properties of the membrane in which
they reside, an example of which is Rab9. It may be that the
sterol-sensing domain of NPC1 enables it to sense cellular lipid
levels and that it functions to maintain a basal concentration of
cholesterol in endosomal membranes. NPC1 may also affect
the concentration and distribution of other cargo, as deter-
dined by cellular needs and endosomal vesicle mobility. Other
NPC1 functional defects or increased NPC1 expression could
disrupt lipid organization and lipid raft structure in both the
plasma membrane and LE membranes (30, 45, 49) and thereby
affect budding and release of HIV-1 particles.

In NPCD cells, LE membranes accumulate, resulting in the
formation of aberrant compartments containing lipid lamellae
bearing both LE and L markers (45, 52). The cholesterol level
in the plasma membrane and the lipid raft content of the
plasma membrane also increase (48, 77). Our data indicate
that HIV-1 particle release is adversely affected as a result of
the late endocytic organelle trafficking dysfunction found in
U18666A-treated cells and in NPCD cells (Fig. 1C and 2B).
These findings reinforce the importance of membrane lipids
and lipid raft structure as budding platforms for HIV-1. The
lack of infectivity of the few HIV-1 particles released by these
cells (Fig. 2D) could result from a virus envelope with altered lipid or protein composition.

To show if the virus production defect observed with NPCD cells is directly caused by the cholesterol accumulation, cholesterol efflux was induced in infected NPCD cells with 20HbpβCD. HIV-1 production by the cells was increased substantially in the first hour of treatment (data not shown). The data indicate that cholesterol trafficking between the internal membrane and the plasma membrane is an important factor in the HIV release defect in NPCD cells.

In summary, we have identified an important and as yet undescribed role of the NPC1 protein in HIV-1 infection. We have demonstrated that NPC1 mutant cells are poor hosts for HIV-1 infection. In these cells, the Gag protein appears to be trapped in LE/L structures, resulting in impaired virus release. Additionally, a direct relationship between NPC1 expression levels and virus release was demonstrated with normal cells. Further studies to fully understand the role of NPC1 in HIV assembly and release, especially in relation to AP-3 and Rab9, may provide important new insights into HIV biology.

ACKNOWLEDGMENTS

This work was supported by NIH grants to J.E.H. (NIAD R21AI062408 and NICHD R01HD040772) and by NIH facilities grants U54NS041071-06, G12RR03032-19, U54CA91408, and U54RR019192-04. We thank J. Hoxie for kindly providing a CD4-independent strain of HIV, M. P. Scott for provision of the NPC1-encoded GTPase, B. D. Liu for the pHEF VSV G plasmid, Suzanne Pfeffer for the Rab9 plasmid, Alvin George for ELISA experiment assistance, Waldemar Popik and Atanu Khatua for their technical assistance, and Jared Elzey for editorial assistance.

We declare that no competing interests exist.

REFERENCES

