Identification of Varicella-Zoster Virus-Specific CD8 T Cells in Patients after T-Cell-Depleted Allogeneic Stem Cell Transplantation

Pim L. J. van der Heiden, Renate de Boer, Dirk M. van der Steen, Michel G. D. Kester, Menno W. A. G. van der Hoorn, Wilmy M. E. Haarman, Helen E. Barnby-Porritt, Jeremy W. Fry, C. E. Napper, Erik W. A. Marijt, Roel Willemze, J. H. Frederik Falkenburg, and Mirjam H. M. Heemskerk

Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands, and ProImmune Limited, Oxford, United Kingdom

Received 27 December 2008/Accepted 14 April 2009

Varicella-zoster virus (VZV) infects about 95% of the population, persists throughout life, and may lead to herpes zoster when the virus reactivates. After T-cell-depleted allogeneic stem cell transplantation (TCD alloSCT), reactivation of the virus leads to considerable morbidity (10). Primary infection elicits both humoral and cellular responses, but cellular immunity is essential for preventing herpes zoster. The VZV genome comprises more than 70 unique open reading frames that encode proteins that are coordinately expressed during replication. The product of open reading frame 62, the immediate-early 62 (IE62) protein, is required for the initiation of VZV replication (9) and is expressed at high levels before viral replication has occurred (8). Previous research has demonstrated that IE62-specific T cells were detected following primary VZV infection and in immune subjects (2, 4). In addition, T cells recognizing various other IE proteins and glycoproteins of VZV, as demonstrated by gamma interferon (IFN-\(\gamma\)) production upon stimulation with peptides or lysate derived from these proteins, have been described (1, 6, 13). The VZV-specific memory T cells found in these studies were predominantly CD4 T cells, while no VZV-specific CD8 T cells were demonstrated without prior in vitro expansion, possibly due to the low frequency of VZV-specific CD8 T cells or to the low sensitivity of the screening methods used to detect CD8 T cells by IFN-\(\gamma\) production upon stimulation. Frey et al. described CD8 epitopes of IE62 detected following in vitro restimulation. However, the HLA restriction and specificity of these T cells were not confirmed (4). Due to the lack of validated VZV-derived immunodominant peptides for major histocompatibility complex (MHC) class I, the analysis of VZV-specific CD8 T-cell responses is hampered (14). To be able to analyze the role of CD8 T cells in VZV reactivation, we therefore set out to identify epitopes for VZV by using VZV-IE62-specific MHC class I peptide complexes.

The predictive algorithms BIMAS (11) and SYFPEITHI (12) were used to select potential HLA-A2 binding peptides from the IE62 protein. Peptides with a score of \(\geq 3\) (BIMAS) or \(\geq 20\) (SYFPEITHI) were considered to have potentially significant binding affinity. The 81 resulting 9-mer peptides were synthesized and tested for binding affinity with the REVEAL MHC-peptide binding assay (ProImmune, Oxford, United Kingdom). HLA-A2 binding affinity was determined by the ability of the peptides to stabilize the HLA-peptide complex. Based on the binding affinity measurements, 34 high- to medium-affinity HLA-A2 binding peptides were selected and used to generate ProVE MHC pentamers (ProImmune, Oxford, United Kingdom). To enable screening of this large number of pentamers, the pentamers were divided into five pools, each containing six or seven pentamers. In the initial screening with pooled pentamers, four HLA-A2-positive patients were screened after a clinical diagnosis of VZV reactivation after TCD alloSCT. The presence of viral DNA in plasma at the time of clinical observations of VZV reactivation was confirmed by real-time PCR on plasma samples as previously described (7). After informed consent was obtained, peripheral blood mononuclear cells (PBMCs) were cryopreserved and thawed and 0.5 \(\times 10^6\) cells were incubated with pentamers at a concentration of 0.03 mg/ml for 10 min at room temperature in RPMI medium supplemented with 2% fetal bovine serum. After the cells were washed twice, 8 \(\mu\)l of FluoroTag-phycocerythrin (PE) was added for 20 min of incubation at 4°C and the cells were counterstained with CD4, CD40, and CD19-fluorescein isothiocyanate (FITC). Flow cytometric analysis was performed on a FACScalibur fluorescence-activated cell sorter (FACS; Becton-Dickinson [BD], San Jose, CA). In one of four patients, pentamer pool 6, containing pentamers 61, 62, 64, 65, 66, and 67, was positive (0.06% of CD8 T cells); no
other positive signals were observed. Staining with the individual pentamers revealed that pentamer 66, containing the epitope ALWALPHAA derived from the IE62 protein of VZV (IE62-ALW-A2) was responsible for the positive signal (0.06% of CD8 T cells, Fig. 1B).

To confirm the specificity of the IE62-ALW-A2-specific T cells, the pentamer-positive T cells were sorted into a single cell per well with a FACSDiva (BD) and expanded as previously described (5). The expanded T-cell clones were labeled specifically with the IE62-ALW-A2 PE-conjugated tetramer that was constructed as previously described (3) (Fig. 1D), and Vβ analysis with the T-cell receptor Vβ repertoire kit (BD) showed that at least two different T-cell clones were isolated, demonstrating the oligoclonal origin of IE62-ALW-A2-positive T cells (Fig. 1E and F). To assess the cytolytic capacity of IE62-ALW-A2 T cells, chromium release assays were performed as described earlier (5). 51Cr-labeled Epstein-Barr virus (EBV) lymphoblastoid cell lines (LCLs) loaded with the IE62-ALW peptide were incubated with IE62-ALW-A2 T cells for 4 h. As demonstrated in Fig. 2A, HLA-A2-positive EBV LCLs loaded with the IE62-ALW-A2 peptide were lysed by both T-cell clones, whereas unloaded EBV LCLs were not lysed. To determine the avidity of the T-cell clones, the IE62-ALW-A2 peptide was titrated on EBV LCLs, and after 24 h of coculture, supernatants were harvested and used to determine the IFN-γ production of the stimulated T cells by standard enzyme-linked immunosorbent assay. Half-maximum IFN-γ production of the T-cell clones was observed when the stimulator cells were loaded with 10 ng/ml peptide, indicative of high-avidity T-cell clones (Fig. 2B). To determine whether the T cells recognized cells endogenously expressing the IE-62-encoding gene, COS-A2 cells were transfected with Lipo-fectamine (Invitrogen, Carlsbad, CA) by using pcDNA vectors coding for different VZV genes, which were kindly provided by E. Wiertz (Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands). The transfected COS-A2 cells were used 24 h after transfection as stimulator cells in this assay. After 24 h of coculture, supernatants were harvested and used to determine the IFN-γ production of the stimulated T cells. IE62-ALW-A2 T-cell clones produced IFN-γ in response to COS-A2 cells endogenously expressing the IE62 protein, as well as COS-A2 cells pulsed with the IE62-ALW-A2 peptide. No IFN-γ was produced when the COS-A2 cells were transfected with the IE63-encoding gene of VZV or pulsed with an irrelevant peptide (Fig. 2C).

To determine whether IE62-ALW-A2-specific T cells were present in healthy individuals, cryopreserved PBMCs from 18 healthy, VZV-seropositive, HLA-A2-positive individuals were screened with the PE-conjugated VZV tetramer. PBMCs were labeled with tetramers for 15 min at 37°C in RPMI medium without phenol supplemented with 2% fetal bovine serum, washed, and analyzed with a FACScalibur. In 3 of these 18 serologically VZV-positive individuals, IE62-ALW-A2 tetramer-positive T cells could be detected (range, 0.01 to 0.02% of CD8 T cells). These data demonstrate that IE62-ALW-A2-specific T cells can be observed and that the frequency of these
individuals negative for IE62-ALW-A2-specific T cells were screened, no IE62-ALW-A2 tetramer-positive cells could be directly detected ex vivo (mean, 0.04% [range, 0.01 to 0.11%] of CD8 T cells), indicating that this epitope is recognized in 42% of the HLA-A2-positive patients during VZV reactivation (Table 1). In VZV-seronegative patients (six patients and three healthy, VZV-seropositive individuals with ex vivo-detectable IE62-ALW-A2-specific T cells (Table 1; Fig. 3A to D). Thus, in 12 (63%) of 19 patients, IE62-ALW-A2 CD8 T cells could be detected either by direct tetramer labeling or after in vitro expansion, indicating that this HLA-A2-restricted epitope is commonly used in HLA-A2-positive individuals.

To study whether the immune response against the IE62-ALW-A2 epitope correlated with clinical reactivation, the percentage of IE62-ALW-A2-positive T cells was analyzed during the course of VZV reactivation in one patient. To determine the presence of viral DNA in plasma before and during the course of VZV reactivation, real-time PCR was performed on plasma samples derived at different time points. Six days prior to clinical signs of VZV reactivation, only 0.03% of the CD8 T cells were IE62-ALW-A2 specific. At 42 days after the onset of VZV reactivation, 0.23% of the CD8 T cells were IE62-ALW-A2 specific. After the VZV infection resolved, the percentage of IE62-ALW-A2-positive T cells was analyzed during the course of VZV reactivation, the percentage of IE62-ALW-A2-positive T cells was analyzed during the course of VZV reactivation. The percentage of IE62-ALW-A2-positive T cells was analyzed during the course of VZV reactivation.
centage of IE62-ALW-A2-specific CD8 T cells declined to 0.09% at day 49 and 0.03% at day 145 after reactivation (Fig. 3D). The T cells present at the peak of the response were predominantly HLA-DR positive, CD45RA negative, CCR7 negative, CD28 negative, and CD27 positive, consistent with an activated effector memory phenotype.

In this study, we demonstrate that CD8 T cells specific for VZV are detectable without prior in vitro stimulation in patients with VZV reactivation following TCD alloSCT. We identified the ALWALPHAA peptide derived from the IE62-encoding gene of VZV as the first validated VZV-specific HLA class I-restricted immunogenic epitope by a pentamer-based epitope discovery method. The detection of the IE62-ALW peptide as an immunogenic peptide for VZV-specific CD8 T cells demonstrates the usefulness of this procedure for discovering new immunogenic virus- or tumor-specific epitopes. We demonstrated that, despite the low frequency, it is possible to detect VZV-specific CD8 T cells, allowing ex vivo analysis of the immune response to VZV infection, reactivation, and possibly VZV vaccination.

REFERENCES