Human Immunodeficiency Virus Type 1 Vpr Inhibits Axonal Outgrowth through Induction of Mitochondrial Dysfunction

Hiroko Kitayama,1 Yoshiharu Miura,1 Yoshinori Ando,1 Shigeki Hoshino,2,3 Yukihito Ishizaka,2 and Yoshi Koyanagi1*

Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan1; Department of Intractable Diseases, International Medical Center of Japan, Tokyo 162-8655, Japan2; and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan3

Received 21 September 2007/Accepted 12 December 2007

Human immunodeficiency virus type 1 (HIV-1)-infected macrophages damage mature neurons in the brain, although their effect on neuronal development has not been clarified. In this study, we show that HIV-1-infected macrophages produce factors that impair the development of neuronal precursor cells and that soluble viral protein R (Vpr) is one of the factors that has the ability to suppress axonal growth. Cell biological analysis revealed that extracellularly administered recombinant Vpr (rVpr) clearly accumulated in mitochondria where a Vpr-binding protein adenine nucleotide translocator localizes and also decreased the mitochondrial membrane potential, which led to ATP synthesis. The depletion of ATP synthesis reduced the transportation of mitochrondia within neurites. This mitochondrial dysfunction inhibited axonal growth even when the frequency of apoptosis was not significant. We also found that point mutations of arginine (R) residues to alanine (A) residues at positions 73, 77, and 80 rendered rVpr incapable of causing mitochondrial membrane depolarization and axonal growth inhibition. Moreover, the Vpr-induced inhibition was suppressed after treatment with a ubiquinone analogue (ubiquinone-10). Our results suggest that soluble Vpr is a major viral factor that causes a disturbance in neuronal development through the induction of mitochondrial dysfunction. Since ubiquinone-10 protects the neuronal plasticity in vitro, it may be a therapeutic agent that can offer defense against HIV-1-associated neurological disease.

AIDS patients who have high levels of viral loads in the cerebrospinal fluid (CSF) tend to develop human immunodeficiency virus (HIV)-associated dementia (14, 31). Recently, attention has been brought to milder neurological diseases displayed in the antiretrovirus therapy-treated patients and healthy HIV-infected individuals (50). Mild neurocognitive disorder is defined as the presence of several cognitive deficits (14). In histopathological examinations of autopsy samples of HIV-1-infected brains, apoptosis in neurons was frequently found (2, 19). However, the frequency of apoptosis was low in patients displaying the milder neurological diseases (1). Although the molecules involved in HIV-associated neurological disturbance have not been completely identified, many data indicate that HIV type 1 (HIV-1)-infected macrophages or microglial cells produce neurotoxic factors such as viral products, excitotoxins, and/or cytokines (14, 20).

Viral proteins that are released from HIV-1-infected macrophages or microglial cells can be deleterious to the central nervous system (CNS). HIV-1 envelope glycoprotein 120 (gp120), transcriptional transactivator (Tat), and viral protein R (Vpr) have been shown to be toxic to neurons (14, 20). Recently, it has been reported that the HIV-1-induced inflammation caused by infiltrated macrophages might impede neuronal cell development in the hippocampus, as shown by a murine model of HIV-1 encephalopathy (43). However, it has not been shown that a viral protein released from HIV-1-infected macrophages can cause the retardation of neuronal development.

An HIV-1 accessory protein, Vpr, which is synthesized late in the HIV-1 replication cycle, is present in a soluble form in CSF and sera of HIV-1-infected patients displaying neurological disorders (34). It has been shown that Vpr causes many cellular dysfunctions, including cell cycle arrest at the G2 phase caused by the induction of the damage-specific DNA-binding protein 1 (DDB1) and the Cullin 4A (Cul4A) E3 ubiquitin ligase pathway (8, 12, 13, 24, 33, 51, 56, 59) and the induction of caspase-dependent apoptosis (39). It is thought that HIV-1 Vpr is a potentially toxic molecule to mature neurons. In vitro studies using cultured neurons derived from rat hippocampal, cortical, and striatal neurons (42, 49) and an in vivo study using Vpr transgenic mice have shown that HIV-1 Vpr might have the potential to cause neuronal apoptosis (27). Furthermore, it is also known that Vpr-induced apoptosis is mediated by its binding to the adenine nucleotide translocator (ANT) in the inner membrane of mitochondria (25, 26, 48).

It has been shown that mitochondria play important roles in the establishment of axonal polarity and the regulation of neurite outgrowth during neuronal development (36). The trafficking of mitochondria may be a necessary task in neuronal development (10). However, the influence of HIV-1 Vpr on immature neurons, including neuronal progenitor cells, or its effect on neuronal plasticity has not been clarified.

Many pieces of evidence indicate that active neurogenesis occurs in parts of the adult brain, including the dentate gyrus (DG) of the hippocampus, the olfactory bulb, and the ventric-
ular epithelium, and is crucial for the formation of neuronal plasticity (35). Neural stem cells derived from DG differentiate into neurons and form synaptic networks, and these morphological and physiological features strongly suggest that the new neurons are incorporated into the hippocampal local circuitry and that they are involved in hippocampus-dependent memory formation and brain repair (35, 53, 57). The goal of this study was to identify the factors that damage neuronal development and to reveal the mechanisms of the inhibition of neuronal development that might cause the pathological alterations of HIV encephalopathy, including cognitive impairment in both pediatric patients and adult patients.

In this study, we examine whether HIV-1-infected macrophages inhibit neuronal cell development by using precursor cells isolated from murine fetal brain tissue. We discovered that soluble Vpr is one of the inhibitory factors of axonal growth and that it delays differentiation in precursor cells. Moreover, a subsequent detailed analysis of recombinant Vpr (rVpr)-treated cells revealed Vpr-induced mitochondrial membrane depolarization, which resulted in the disruption of ATP synthesis and the inhibition of mitochondrial transport in neurites of neuronal precursor cells. These negative effects were significantly suppressed in differentiation cultures and organotypic hippocampal slice cultures by ubiquinone-10 (UQ), which is a ubiquinone analogue that protects mitochondria from membrane depolarization. These data suggest that UQ is a therapeutic agent that can offer defense against the HIV-1-induced impairment of neuronal development.

MATERIALS AND METHODS

Preparation of CM from MDM. Neurobasal conditioned medium (CM) supplemented with Dulbecco’s modified Eagle’s medium (DMEM)-high glucose, 10% fetal calf serum, and B27 supplement (Invitrogen, Carlsbad, CA) was used to culture monocyte-derived macrophages (MDM) isolated from peripheral blood mononuclear cells of HIV-1-seronegative healthy donors. The MDM were left uninfected or were infected with HIV-1, JRFL (32) at a multiplicity of infection of 1.0. Five days after HIV-1 infection, culture supernatant was collected and the concentration of p24CA antigen (RETROtek; ZeptoMetrix, Buffalo, NY) and soluble Vpr protein (23) in each CM was measured by enzyme-linked immunosorbent assay (ELISA). Control CM, CM collected from uninfected MDM, and CM collected from infected MDM were designated C-M, C-M, and HIV-CM, respectively.

Preparation of rVpr and synthesized peptides. Wild-type rVpr (rVpr-WT) was purified as described previously (54). Three rVpr mutants that had alanine (A) instead of arginine (R) at position 80 (R80A), isoleucine (I) at position 81 (B1A), or arginine at positions 73, 77, and 80 (R73, 77, 80A) were prepared with the same procedure as that used for rVpr-WT. Four Vpr peptides were synthesized (Osaka Peptide Institute, Japan, and Wako Pure Chemicals, Japan).

Differentiation culture of neurons. The generation and maintenance of neurons from murine embryonic forebrains were performed as described previously (16). Briefly, cells were dissociated from the forebrains of embryonic day 15 ICR mice (Japan SLC, Inc., Japan). The experiments were carried out in accordance with the guidelines for animal experimentation at Kyoto University. Three days after the initiation of culture, neurons were separated into individual cells by trypsin-EDTA treatment and were plated onto glass coverslips (12 mm) precoated with poly-L-ornithine hydrochloride (Sigma-Aldrich, St. Louis, MO) and laminin from Engelbreth-Holm-Swarm murine sarcoma (Sigma-Aldrich) and were cultured with neurobasal CM. Phase-contrast images were acquired using a Leica CTR 6500 (Leica Microsystems, Heidelberg, Germany) with 20× and 40× objectives.

Measurement of neurite length and classification of developmental stages. Quantifications were performed using Leica FW4000 software (Leica Microsystems). To measure the length of neurites or axons, each neurite or axon from randomly chosen cells was traced manually from the proximal end to the distal end. To determine the percentage of cells in each developmental stage, randomly chosen cells were classified into three developmental stages based on their morphologies. Any progenitor cells that had an extended neurite (at least twice as long as other neurites by observation) were categorized as stage 3, and progenitor cells that do not have an extended neurite were categorized as stage 2. Progenitor cells that formed lamellipodia, which form small protrusion veils and a few spikes, were categorized as stage 1. The samples were prepared and blinded by one investigator. The measurement and classification were done by another investigator, to whom no information regarding the treatments was given. Experiments were repeated at least three times, and more than 100 adherent progenitor cells were analyzed for each independent experiment.

Vpr neutralization. To neutralize soluble Vpr in HIV-CM, progenitor cells were cultured in HIV-CM supplemented with mouse monoclonal anti-Vpr antibody (SD1; 20 ng/ml) (23) or mouse monoclonal anti-p17MA antibody (200 ng/ml; Advanced Biotechnologies, Columbia, MD).

Reagents. The following reagents were used: caspase-3 inhibitor (z-DEVD-afc, BD Biosciences, San Diego, CA), UQ (Sigma-Aldrich), ATP (Sigma-Aldrich), and carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP, Sigma-Aldrich).

Staining of mitochondria in live cells. To visualize mitochondria and calculate the velocity of mitochondrial transport in neurites or axons, cells were incubated with 100 nM Mitotracker Green FM (Invitrogen) by following the manufacturer’s protocol. The temperature was maintained at 37°C with an air stream incubator. Cells were visualized with an oil immersion microscope (TCS SP2 AOBS; Leica Microsystems) using a 63× objective on a confocal laser microscope (TCS SP2 AOBS; Leica Microsystems) using a 488-nm excitation wavelength for the quantification of mean pixels. The quantification of mean pixels was done by following the protocol supplied by the manufacturer (LCS Lite software; Leica Microsystems). To measure the velocity, images were acquired using a fluorescence microscope (Leica CTR 6500) using a green fluorescent protein (GFP) filter every 10 s for 120 s. The velocity of mitochondrial transport within neurites or axons was calculated by displacement (in micrometers) over time (in seconds). The mitochondrial membrane potential (ΔΨm) was calculated using the fluorescent intensity of a ΔΨm-sensitive dye, 5,5’,6,6’-tetrachloro-1,1’-3,3’-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1; Invitrogen), by following the manufacturer’s protocol. At 48 h of culture, cells were incubated with 1 µg/ml JC-1 at 37°C for 30 min and were visualized with an oil immersion 63× objective on a fluorescence microscope (Leica CTR 6500) using GFP and Texas Red filters. The temperature was maintained at 37°C with an air stream incubator. The red fluorescence intensity and green fluorescence intensity were measured using Leica FW4000 software. The normalized intensity ratio between green and red depends on ΔΨm. ΔΨm (normalized JC-1 ratio) was calculated with the following formula: ΔΨm = (red fluorescence intensity − base fluorescence intensity)/(green fluorescence intensity − base fluorescence intensity).

ATP production assay. Cellular ATP levels were measured using the ATP bioluminescence assay kit H5 II (Roche Applied Sciences, Indianapolis, IN). Cells were lysed in the manufacturer’s reagent. Cell lysates were used alone or were reacted with ATP reagents (sodium dodecyl sulfate–15% polyacrylamide gel electrophoresis, transferred onto a polyvinyl difluoride membrane (Immobilon transfer membranes; Millipore, Bedford, MA), and incubated with antibodies against cytochrome c (BD Biosciences), Vpr (23), and ANT (Santa Cruz Biotechnology, Santa Cruz, CA). Anti-mouse/rabbit immunoglobulin G (IgG) horseradish peroxidase-linked antibody (Cell Signaling Technology, Denver, MA) was used to detect the primary antibodies bound to the protein by using Western lighting chemiluminescence reagent (Perkin Elmer). The standard curve for ATP was obtained by measuring the luciferase intensity from a serially diluted standard ATP solution.

Isolation of mitochondria and Western blotting. The isolation of mitochondria in neuronal cells left untreated or treated with rVpr for 48 h was performed with the Qproteome mitochondria isolation kit (Qiagen, Hilden, Germany) by following the manufacturer’s protocol. The cytosolic fraction was concentrated by acetone precipitation. Proteins from the mitochondrial fraction or cytosolic fraction or the whole-cell lysate were separated by sodium dodecyl sulfate–15% polyacrylamide gel electrophoresis, transferred onto a polyvinyl difluoride membrane (Immobilon transfer membranes; Millipore, Bedford, MA), and incubated with antibodies against cytochrome c (BD Biosciences), Vpr (23), and ANT (Santa Cruz Biotechnology, Santa Cruz, CA). Anti-mouse/rabbit immunoglobulin G (IgG) horseradish peroxidase-linked antibody (Cell Signaling Technology, Denver, MA) was used to detect the primary antibodies bound to the protein by using Western lighting chemiluminescence reagent (Perkin Elmer LAS, Boston, MA).

Slice cultures and retrovirus vector transduction. Organotypic hippocampal slices were prepared from postnatal 7-day-old Wistar Hannover GALAS rats (CLEA Japan, Inc.) as previously described (29). The slices were cultured on a previously trisulfonated membrane (Millicell-CM; Millipore) at 34°C for 14 days. Slices were cocultured with HIV-1CPR-infected cells (multiplicity of infection, 1.0), uninfected MDM, or recombinant Vpr protein (23) across the porous membrane for 2 weeks. In some slices, an enhanced GFP (EGFP)-expressing murine leukemia virus (MLV)-based vector, SRe-EGFP (3), was inoculated in the suprapyramidal region of the dentate granule cell layer (GCL).
Immunocytochemistry and immunohistochemistry. The neuronal cells were fixed with paraformaldehyde (PFA) for 1 h at 4°C. After being washed, fixed cells were treated with phosphate-buffered saline (PBS) containing 5% normal goat serum (NGS) and 0.05% Triton X-100 at room temperature (RT) for 1 h, followed by incubation with mouse monoclonal anti-eytomechrome c at RT for 2 h. Samples then were incubated with Alexa Fluor 488-conjugated anti-mouse IgG (Invitrogen) at RT for 2 h. Nuclei were stained using Hoechst 33342 (Invitrogen). The slices were fixed by immersion in 4% PFA for 1 h at 4°C. After being washed, slices were treated with buffer containing 5% NGS and 0.3% Triton X-100 at RT for 6 h with a fluorescent dye-conjugated secondary antibody (Alexa Fluor 594- or 488-conjugated anti-mouse IgG [Invitrogen]). Each sample was examined under a confocal laser microscope (TCS SP2 AOBS) with 40× and 63× objectives. The quantification of fluorescence intensity was done by following the protocol supplied by the manufacturer.

Statistical analysis. Data were generated from at least three replicate experiments. The statistical analysis was carried out by one-way analysis of variance. Multiple comparisons were performed with the Student’s t test. A P value of less than 0.05 was considered significant.

RESULTS

Inhibition of axonal growth by HIV-1-infected MDM. To examine the effect of HIV-1-infected macrophages on neuronal development in vitro, we utilized differentiation cultures using neuronal progenitors derived from murine neurosphere cells. Neurite outgrowth in neurosphere cells apparently was hampered in the presence of CM of HIV-1_JRF-infected MDM (HIV-CM) compared to the growth of those cultured in CM of uninfected MDM (M-CM) or in control CM (C-CM) (Fig. 1A). A similar inhibition was observed when we used progenitor cells isolated from murine fetal brain (data not shown). At 8 h of culture, the mean lengths of primary neurites were comparable among progenitor cells cultured in HIV-CM, M-CM, and C-CM (26.15 ± 8.94, 33.95 ± 4.84, and 34.90 ± 13.11 μm, respectively) (Fig. 1B), indicating that the initial steps of neurite generation are not affected. At 24 h of culture, however, the mean length of primary neurites in progenitor cells cultured in HIV-CM was less than those in progenitor cells cultured in M-CM or C-CM. As shown in Fig. 1B, at 72 h, the average length of the primary neurites of neuronal cells cultured with HIV-CM (52.20 ± 14.64 μm) was approximately one-third the length of those from cells cultured with M-CM or C-CM (169.70 ± 37.52 and 175.15 ± 34.14 μm, respectively).

We then evaluated polarity formation in progenitor cells cultured in HIV-CM, M-CM, and C-CM. When neuronal progenitor cells are plated, they initially form lamellipodia, which form small protrusion veils and a few spikes (stage 1). Following this event, several neurites of similar lengths extend (stage 2), leading to the formation of minor neurites. Finally, one of the neurites starts to grow rapidly, forming the primary neurite, while other neurites remain quiescent. This step is characterized by primary neurite outgrowth and axon formation, which results in the morphological polarization of the neuron (stage 3) (22). One hundred cells were randomly chosen from each CM and were classified into the three developmental stages according to their morphologies. When the progenitor cells were examined at 24 h, we found that more than half of them were in stage 2, independent of the CM (Fig. 1C). As shown in Fig. 1D, at 48 h the majority of progenitors cultured in C-CM and M-CM were in stage 3 (63.33% ± 0.58% and 55.33% ± 8.49%, respectively), but the majority of them were still in stage 2 in HIV-CM (64.00% ± 6.36%). These results indicate that the cells exposed to C-CM and M-CM had similar abilities to differentiate up to 72 h in culture and that the differentiation of HIV-CM-cultured progenitors was arrested at stage 2.

When HIV-CM with a low p24 concentration (below 200 pg/ml) was used, the inhibition of axon formation was not observed at 48 h (data not shown). However, when HIV-CM with a high HIV-1 p24 concentration (70.28 ± 21.6 ng/ml) was used, the inhibition was obvious, indicating the possibility that viral proteins are involved in the inhibition of axon formation. In fact, a relatively large amount of Vpr was detected in HIV-1 virion-free supernatant of HIV-CM (18.37 ± 7.54 pg/ml), as measured using ELISA. When the progenitor cells were cultured in HIV-CM in the presence of anti-Vpr antibody (8D1) (23), neurite outgrowth was clearly rescued at 72 h (Fig. 1E) and the number of neuronal cells scored at stage 3 clearly increased (Fig. 1F). On the other hand, no protective effect was observed in the anti-p17MA antibody-treated groups (Fig. 1E and F). These results suggest that Vpr produced from HIV-1-infected MDM played a role in the inhibition of axonal growth. As the recovery of neuronal cell differentiation was not complete, HIV-CM likely contains another inhibitory factor(s) against neurite outgrowth.

Inhibition of axonal outgrowth by soluble Vpr. To assess the direct effect of Vpr on axon formation, rVpr (23) was added to differentiation cultures of mouse neurosphere-disassociated progenitor cells. Since the highest concentration of soluble Vpr protein in HIV-1 virion-free HIV-CM was 26.60 pg/ml (1.9 pM) as measured using ELISA, rVpr was used at two concentrations: 2.0 pM (approximately equal to the highest concentration of Vpr in HIV-CM, designated Vpr-2.0) and 10 pM (Vpr-10). The progenitor cells were cultured in CM containing rVpr and were analyzed for neurite outgrowth. Neurite outgrowth was clearly inhibited in a dose-dependent manner (Fig. 2A and B). As shown in Fig. 2B, at 72 h in culture, the mean length of primary neurites was 176.70 ± 13.75 μm (C-CM), 105.97 ± 6.28 μm (Vpr-2.0), and 85.83 ± 17.46 μm (Vpr-10) (Fig. 2B). When anti-Vpr antibody was added to the culture prior to the addition of rVpr, Vpr-induced inhibition of neurite outgrowth was clearly blocked (percentage of suppression, 68.50%; no statistical significance was found compared to results for the control group) (Fig. 2C).

To examine whether Vpr inhibits axon and neuronal polarity formation, progenitor cells were plated and cultured in the presence of C-CM, Vpr-2.0, or Vpr-10. We randomly selected 100 cells in each culture and classified them into the three developmental stages. At 24 h, more than half of them were in stage 2, independent of the CM (Fig. 2D). At 48 h, the percentage of stage 3 progenitor cells was 64.9% ± 2.62% in cells cultured with C-CM, while the percentage was significantly lower in the presence of rVpr (Vpr-2.0, 29.67% ± 4.04%; Vpr-10, 28.00% ± 3.00%). A considerably large fraction of cells remained in stage 2 (Vpr-2.0, 64.33% ± 1.53%; Vpr-10, 63.33% ± 3.21%) when exposed to rVpr (Fig. 2E). These results confirm that the soluble form of Vpr protein induces
the inhibition of axon formation in a manner similar to that of HIV-CM.

Mitochondrial membrane depolarization of neurons caused by Vpr. Mitochondria play important roles in neuronal developmental processes, including the establishment of axon polarity and the regulation of neurite outgrowth (36, 37). Since it has been reported that Vpr influences mitochondrial function in several cell types and induces mitochondrial membrane depolarization (5, 25, 26), Vpr also may induce mitochondrial dysfunction in neuronal progenitor cells. To elucidate the mechanism of Vpr-induced mitochondrial dysfunction, we added serially increasing concentrations of rVpr, from 0.2 pM to 1.0 nM, to progenitor cell cultures and measured the ΔΨm in live neuronal progenitor cells using staining with JC-1. As shown in Fig. 3A, the ΔΨm clearly decreased in rVpr-treated cells in a dose-dependent manner, indicating that Vpr also affected the ΔΨm in neuronal progenitor cells.

Mitochondrial membrane depolarization has been shown to reduce ATP production (10). The proper transport of mitochondria within axons or neurites needs its motor proteins, and the motor proteins utilize ATP for its mobilization (10, 21). As shown in Fig. 3B, the concentration of cellular ATP was significantly reduced by exposure to 2.0 pM rVpr (1.50 ± 0.56 μM) compared to that in C-CM-cultured progenitor cells (4.57 ± 0.79 μM).

Although mitochondrial membrane depolarization and the
depletion of ATP concentration were induced by rVpr treatment, there was no significant difference in the percentages of progenitor cells expressing activated caspase-3 between 2.0 pM rVpr-treated cells and C-CM-treated cells (Table 1). Although apoptosis was not detected in progenitor cells cultured with low concentrations of rVpr (0.2, 2.0, and 10 pM), at higher concentrations of rVpr (100 pM or 1.0 nM), the differentiation of progenitor cells was arrested at stage 1 or early in stage 2 (data not shown), and many cells expressed activated caspase-3 (Table 1).

It has been shown that the depolarization of the mitochondrial membrane potential and the inhibition of ATP synthesis cause mitochondrial transport to slow down (10, 46). To measure the velocity of mitochondrial movement within neurites or axons, progenitor cells left untreated or treated with rVpr were stained for mitochondria using MitoTracker. We detected severely suppressed mitochondrial transport within neurites in 2.0 pM rVpr-treated cells (Fig. 3C, column b) compared to that of neurites cultured in C-CM (Fig. 3C, column a). As shown in Fig. 3D, the calculated velocity of mitochondrial transport in 2.0 pM rVpr-treated cells was slower than that in C-CM-treated cells (0.10 ± 0.02 μm/s and 0.31 ± 0.04 μm/s, respectively). These results suggest that Vpr induces abnormality in mitochondria transportation through the suppression of ATP synthesis.

To elucidate the effect of mitochondrial transport inhibition in mitochondrial localization, cells treated with serially increasing concentrations of rVpr were stained with antibody against cytochrome c, a mitochondrial inner membrane protein. As shown in Fig. 3E, the localization of mitochondria in primary neurites of cells seemed to be altered and reduced when the progenitor cells were treated with rVpr at concentrations above 0.2 pM. Although rVpr did not affect the total mitochondrial content in each live cell as shown by MitoTracker staining (Fig. 3F), the mitochondrial content in neurites of rVpr-treated cells was significantly reduced (Fig. 3G), indicating that the amount of mitochondrial content decreased predominantly within neurites in the presence of rVpr, and this might be caused by the retardation of mitochondrial transportation.
Correlation between rVpr-induced mitochondrial membrane depolarization and developmental retardation of neuronal progenitor cells. We used Vpr recombinant mutants that have a strong, a moderate, or no ability to caused mitochondrial membrane depolarization to study the correlation between Vpr-mediated ΔΨm reduction and developmental arrest. As shown in Fig. 4A, one C-terminal deletion mutant of rVpr protein containing amino acids (aa) 1 to 84 (rVpr-C12),
which is defective in DNA binding (54), was used, and three point mutants of rVpr were used, including R80A, which moderately induces mitochondrial membrane depolarization (25); I81A, which was used as a negative control; and R73, 77, 80A, which cannot induce mitochondrial membrane depolarization (25). We treated the progenitor cells with each mutant rVpr at 2.0 pM and measured the ∆Ψm in the treated cells. Although the suppression of ∆Ψm by rVpr-ΔC12 or rVpr-I81A was similar to that by rVpr-WT, the suppression by rVpr-R80A was clearly less than that by rVpr-WT (Fig. 4B). Furthermore, as shown in Fig. 4B, a triple-amino-acid mutant (rVpr-R73, 77, 80A) did not have any ability to cause mitochondrial membrane depolarization. These results confirmed that R73, R77, and R80 are critical amino acids for the induction of mitochondrial membrane depolarization, as described previously (25).

To determine the correlation between the mitochondrial membrane potential and neuronal development, neuronal progenitor cells treated with those mutants at a constant concentration (2.0 pM) were classified into three developmental stages at 48 h in culture as described in Materials and Methods. As shown in Fig. 4C, the classification profiles of rVpr-ΔC12- and rVpr-I81A-treated cells were almost identical to that of rVpr-WT-treated cells. However, in rVpr-R80A-treated cells, less developmental retardation was found and a significantly higher percentage of cells were in stage 3 compared to that of rVpr-WT-treated cells. Furthermore, in rVpr-R73, 77, 80A-treated cells, no developmental arrest was found, as shown by the very similar classification profile compared to that of the control profile. These results show that there may be a positive correlation between the ability of a Vpr mutant to cause membrane depolarization and its ability to cause developmental arrest.

As shown in Fig. 4D, a small but convincing amount of Vpr was detected in the ANT-containing mitochondrial fraction but not in the cytosolic fraction in neuronal progenitor cells treated with 2.0 pM rVpr-WT. This suggests that Vpr has the tendency to accumulate in mitochondria of neuronal progenitor cells. Similar amounts of rVpr-R73, 77, 80A and rVpr-WT were found to be in the mitochondria of the treated cells. However, no cytoplasmic cytochrome c was found in cells treated with a high concentration of rVpr-R73, 77, 80A. In addition, a large amount of cytochrome c release was found in cytosolic fractions in cells treated with a high concentration (1.0 mM) of rVpr-WT, but the release of cytochrome c was hardly found in cells treated with 2.0 pM of rVpr.

To confirm that the observed effects were indeed caused by rVpr, several Vpr deletion mutant peptides were used at a constant concentration (2.0 pM). The Vpr deletion mutant peptides we used were C45 (aa 53 to 96) (38), C45D18 (aa 53 to 78) (38, 55), LR20 (aa 62 to 81), and LR17 (aa 62 to 78) (Fig. 4A). As shown in Fig. 4B, the ∆Ψm suppression by C45 and LR20 was similar to that by rVpr-WT, but the suppression by C45D18 and LR17 was clearly weaker. In addition, as shown in Fig. 4C, the developmental classification profiles of C45- and LR20-treated cells were almost identical to that of rVpr-WT-treated cells. However, C45D18- and LR17-treated cells had significantly decreased abilities to induce developmental retardation. These results suggest that Vpr deletion mutant peptides have the same abilities to cause mitochondrial membrane depolarization and developmental retardation that rVpr mutants have. The abilities of the Vpr deletion mutant peptides to cause developmental arrest also were dependent on their ability to cause mitochondrial membrane depolarization.

Protection against rVpr-induced mitochondrial dysfunction by UQ. We found that mitochondrial membrane depolarization might induce the inhibition of neuronal development. To reveal the direct effect of mitochondrial membrane depolarization on neuronal development, neuronal cells were treated with an inhibitor of membrane depolarization along with rVpr-WT. UQ, which is a ubiquinone analogue that protects mitochondrial membranes against depolarization by closing the mitochondrial permeability transition pore (mPTP), was used. First, to confirm the specificity of UQ for the inhibition of membrane depolarization, neuronal cells were treated with FCCP, which induces mitochondrial membrane depolarization and inhibits mitochondrial movement within axons (46), in the presence or absence of UQ. At 48 h of culture, the morphology of cells treated with FCCP was very similar to that of cells treated with 2.0 pM rVpr (data not shown). As shown in Fig. 5A, mitochondrial membrane depolarization was induced in neuronal progenitor cells treated with FCCP (100 μM). In progenitor cells simultaneously treated with FCCP and UQ (100 μM), the mitochondrial membrane potential was clearly sustained. Next, we added UQ to cultures of neuronal progenitor cells treated with rVpr (2.0 pM). UQ protected the progenitor cells against depolarization and significantly restored the membrane potential (Fig. 5A). Although membrane depolarization was suppressed with treatment using UQ, no significant recovery was found in cells treated with the caspase-3 inhibitor z-DEVD-fmk (100 μM) or with ATP (10 μM). Similarly, ATP production was not rescued by treatment using z-DEVD-fmk (2.53 ± 0.43 μM) (Fig. 5B). In contrast, when UQ was used, the ATP concentration (3.06 ± 0.36 μM) was restored to the proximity of the control value (3.64 ± 0.30 μM) (Fig. 5B). Treatment with both UQ and z-DEVD-fmk seemed to increase ATP synthesis, although this increase was not found to be statistically significant compared to ATP synthesis with UQ treatment alone.

We next measured the velocity of the transportation of mitochondria in neurites or axons using MitoTracker. We showed severely suppressed mitochondrial transport within the neurites in rVpr-treated cells (Fig. 3C and D). As shown in Fig. 5C, although the addition of z-DEVD-fmk to rVpr-treated cells could not restore the velocity of mitochondrial transport (0.12 ± 0.02 μm/s), the addition of UQ or both UQ and z-DEVD-fmk to rVpr-treated cells restored the velocity of mitochondrial transport (0.17 ± 0.01 and 0.19 ± 0.02 μm/s, respectively), indicating that the transportation of mitochondrial...
dria within neurites was restored by the treatment of UQ through the restoration of ATP production, followed by the inhibition of mitochondrial membrane depolarization.

To examine the protective capability of UQ against Vpr-induced developmental retardation, neuronal progenitor cells were classified into three developmental stages. When only caspase-3 inhibitor (z-DEVD-fmk) was added to CM of 2.0 pM Vpr-treated cells, the majority of neuronal cells were retained.

FIG. 4. Inhibition of neuronal development caused by rVpr-induced mitochondrial membrane depolarization. (A) The amino acid sequences of Vpr mutants are displayed. The amino acid sequence of rVpr-WT is depicted at the top. The Vpr deletion mutant peptides and recombinant mutant proteins are listed below, with horizontal lines depicting unaltered sequences and numbers delineating the first or last amino acid of each mutant. The alanines that replace each residue are indicated. (B) Progenitor cells treated with C-CM or with 2.0 pM rVpr-WT (WT), four rVpr mutants (ΔC12; R80A; I81A; and R73, 77, 80A) or four Vpr mutant peptides (C45, C45D18, LR20 and LR17) were stained with JC-1, and the ΔΨm values were calculated as described in the text. ***, P < 0.01 compared to results for rVpr-WT. (C) Cells cultured in each condition (2.0 pM) were classified into three developmental stages as described above. ***, P < 0.01 compared to results for rVpr-WT. (D) Cells were cultured in C-CM or rVpr-WT (2.0 pM and 1.0 nM; rVpr-WT-2.0 and rVpr-WT-1n, respectively) or rVpr-R73, 77, 80A (2.0 pM and 1.0 nM; rVpr-R73, 77, 80A-2.0 and rVpr-R73, 77, 80A-1n, respectively). The mitochondrial fraction (Mito.) and cytosolic fraction (Cyto.) were separated, and anti-cytochrome c (α-Cyto-c), anti-Vpr (α-Vpr), or anti-ANT (α-ANT) antibody in individual fractions or whole-cell lysates (WCL) was detected by Western blotting using each antibody.

VOL. 82, 2008 RETARDATION OF NEURONAL DEVELOPMENT BY HIV Vpr 2535

Downloaded from http://jvi.asm.org/ on May 1, 2016 by guest
at stage 2, as was the case for cells treated with Vpr alone. However, after treatment with UQ or both UQ and z-DEVD-fmk, a significant fraction of Vpr-treated cells proceeded to stage 3 (Fig. 5D), suggesting that the recovery of mitochondrial transportation induced by UQ treatment allowed for the development of neurons. Furthermore, to determine the ability of UQ to restore neurite outgrowth, the length of the primary neurite of neuronal cells was measured at 48 h after the initiation of differentiation. When UQ was added to 2.0 pM Vpr-treated cells, the mean length of primary neurites was significantly longer than that of cells treated with Vpr alone or also with z-DEVD-fmk (Fig. 5E). Interestingly, the rescue of axonal growth was more efficient when UQ and z-DEVD-fmk were added together than when only UQ was added ($P < 0.05$).

Protective effect of UQ on neuronal development in organotypic hippocampal slice cultures. To better simulate the effect of soluble Vpr on neuronal precursor cells in vivo and to characterize the ability of the caspase-3 inhibitor and UQ to rescue neuronal development from Vpr-induced abnormalities, we employed rat organotypic hippocampal slice cultures. In organotypic hippocampal slice cultures, neurons are maintained in microenvironments that are very similar to those found in vivo (17). Not only the extracellular architect but also the synaptodendritic interactions are reconstituted in slice cul-
tures (18). In addition, the presence of neurogenesis has been reported to happen in hippocampal slice cultures (28, 45). For these reasons, slice cultures have been used widely to study the morphology and plasticity of the hippocampus. The typical cellular arrangement of granule cells was reconstituted in slices on porous membranes 14 days after the initiation of culture. Slices were cocultured with HIV-1infected MDM or uninfected MDM across the porous membrane or were exposed to rVpr (2.0 pM). From the examination of B3T, a neuronal cell marker, and NFP expression using immunofluorescence, we found that the number of axons severely decreased in the slices exposed to HIV-1-infected MDM or rVpr (Fig. 6A and B). In addition, in the slices exposed to HIV-1-infected MDM or rVpr, the expression of MAP2, a marker for the neuronal dendritic network, was severely disturbed (Fig. 6A and B). We also found atrophy and the beading of dendrites (Fig. 6A), indicating that postsynaptic structures also were severely disrupted. These results suggest that HIV-1-infected MDM or Vpr induce axonal and dendritic malformation in organotypic hippocampal slice cultures.

Intrinsic and spontaneous neurogenesis are reported to take place at the DG in organotypic hippocampal slice cultures (28, 45). To investigate the dysfunction of neuronal cell development in hippocampal slice cultures exposed to HIV-MDM or rVpr, we labeled endogenous precursor cells in the slices using an EGFP-expressing MLV vector (SRα-EGFP). The virus vector was microinjected into the suprapyramidal region of the GCL as described before (28). Since MLV only infects dividing cells and its DNA is incorporated into the host DNA, only newly divided cells express EGFP. After inoculation with SRα-EGFP, slices were exposed to HIV-1-infected MDM, uninfected MDM, or rVpr in the presence or absence of caspase-3 inhibitor (z-DEVD-fmk), UQ, or both. During daily observations of the inoculated areas under a fluorescent microscope, we found many EGFP-expressing cells (data not shown). The numbers of the EGFP-expressing cells increased for 2 weeks postinoculation in all slices (data not shown). To observe the morphology, the slices were fixed and examined by confocal microscopy. EGFP-expressing cells typically were detected in and around the GCL area. Most cells possessed one elongated axon and several dendrite-like processes in slices cultured with or without uninfected MDM (Fig. 7A, rows a and b). In contrast, in slices exposed to HIV-1-infected MDM or rVpr alone, most EGFP+ cells possessed minor neurites with similar lengths but no prominent axons (Fig. 7A, rows c and d), suggesting that both Vpr released from HIV-1-infected MDM and soluble Vpr induced abnormalities in neuronal development. As shown in Fig. 7A, row e, in slices cultured with rVpr plus z-DEVD-fmk, many EGFP-expressing cells had morphologies similar to those of cells in slices exposed to HIV-1-infected MDM or rVpr alone, suggesting that the effect of Vpr was not due to caspase-3-dependent apoptosis. In rVpr-treated slices cultured in the presence of both z-DEVD-fmk and UQ, more than one-third of the EGFP-expressing cells had a single elongated axon and were NeuNhigh+ cells, which is expressed specifically in the nuclei of mature neurons (Fig. 7B, row c), although most EGFP+ cells had several minor neurites and were NeuNlow+ in rVpr-treated slices cultured in the absence (Fig. 7B, row a) or the presence of z-DEVD-fmk (Fig. 7B, row b). Next, EGFP+ cells were categorized into immature neurons or mature neurons by their morphologies and the expression of NeuN. EGFP+/NeuNhigh+ cells, which have minor neurites but not extended axons, are classified as immature neurons, and EGFP+/NeuNlow+ cells that have one elongated axon and several dendrites are classified as mature neurons. As shown in Fig. 7C, for EGFP-expressing mature neurons in rVpr-treated slices cultured in the presence of UQ or both z-DEVD-fmk and UQ, the percentages of EGFP-expressing mature neurons (33.80% ± 3.02% and 34.64% ± 1.83%, respectively) increased compared to those in rVpr-treated slices cultured with or without z-DEVD-fmk (18.48% ± 3.26% and 18.23% ± 1.78%, respectively). In addition, in HIV-CM-cocultured slices, the percentage of EGFP-expressing mature neurons increased in the presence of both z-DEVD-fmk and UQ (23.35% ± 3.42%) compared to that in slices cocultured with HIV-CM (8.65% ± 2.15%) (Fig. 7C). These results suggest that UQ has a protective effect on neuronal development in organotypic hippocampal slice cultures.

DISCUSSION

Neuronal damage can be caused by various viral or host factors, including viral products, excitotoxins, cytokines, and chemokines released from HIV-1-infected macrophages or microglial cells in HIV-1 encephalopathy (14, 29). Viral products such as HIV-1 gp120, Tat, and Vpr have been shown to be deleterious to neurons and to induce neuronal apoptosis (6, 9, 27, 30, 42). Recently, HIV-1-infected macrophages have been shown to affect neuronal development in a murine model (43), although the factors that affect neuronal development have not been identified and the mechanisms have not been clarified.

We found that HIV-1-infected macrophages produced an inhibitory factor(s) that induced the developmental arrest of neuronal progenitor cells, and we identified Vpr as one of the relevant viral factors (Fig. 1 and 2). Although several lines of evidence suggest that HIV-1 Vpr is a potentially toxic molecule that mediates cell death in mature neurons during HIV-1 infection (27, 42, 49), the influence of HIV-1 Vpr on neuronal development or neuronal plasticity has not been examined. Neuronal development can be divided into five morphological stages. First, cells form lamellipodia (stage 1). After several hours, the neurons form a number of immature neurites (stage 2). One of these minor neurites then begins to extend rapidly, becoming much longer than the other neurites (stage 3). This extended neurite becomes an axon. The other neurites then become mature dendrites (stage 4) and begin to establish dendritic components and to construct premature dendritic spines (stage 5) (4). It has been reported that it takes several days for plated neuronal progenitor cells to enter stage 4 (4). As we observed the cultured progenitors for 72 h, they were not investigated for progression beyond stage 3. We revealed that the majority of progenitor cells could extend primary neurites and proceed from stage 2 to stage 3 after 48 h in culture, although the majority of cells treated with both HIV-CM and recombinant Vpr protein could not extend primary neurites and proceed from stage 2 to stage 3 (Fig. 1 and 2), suggesting that Vpr is the key protein that had affected neuronal developmental arrest and caused the inhibition of axon formation in HIV-1-infected MDM. Although the neuronal developmental arrest was suppressed by treatment with anti-Vpr antibody, the
recovery of neuronal development was not complete (Fig. 1E and F). In addition, soluble Vpr protein induced the inhibition of neuronal development in a manner similar to that of HIV-CM, although the effect on developmental retardation apparently was weaker than that of HIV-CM (Fig. 1 and 2). These results suggest that HIV-1-infected macrophages produce other viral proteins or cell-derived humoral factors that also affect neuronal development.

Vpr was found to induce an abnormality in mitochondrial transport at low concentrations through the suppression of

<table>
<thead>
<tr>
<th>Recovery of Neuronal Development</th>
<th>HIV-CM</th>
<th>Vpr</th>
<th>Vpr + DEVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MDM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV-MDM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rVpr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rVpr + DEVD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 6. Axonal disruption and atrophy of dendrites in organotypic hippocampal slices exposed to HIV-1-infected MDM or rVpr. (A) Organotypic hippocampal slices were cocultured alone (a) (CM), uninfected (b) (MDM) or HIV-1-infected MDM (c) (HIV-MDM), or rVpr alone (d) (rVpr) or in the presence of the caspase-3 inhibitor z-DEVD-fmk (e) (rVpr + z-DEVD). Slices were stained with antibodies against B3T, NFP, and MAP2 as described in Materials and Methods. Images were obtained using a 20× objective. Arrows indicate atrophy and the beading of dendrites. CA3, CA3 region of the hippocampus. Scale bars, 50 μm. (B) The mean pixels of the signal in representative areas of the B3T-, NFP-, and MAP2-stained samples shown in panel A were quantified. *, P < 0.05 compared to results from culture with CM or MDM (HIV-MDM) or CM (rVpr and rVpr + DEVD-fmk); **, P < 0.01 compared to results from culture with CM or MDM (HIV-MDM) or CM (rVpr and rVpr + z-DEVD).
ATP synthesis following mitochondrial membrane depolarization in neuronal progenitor cells (Fig. 3A and B). One of the major functions of mitochondria is to generate an intracellular source of ATP. Neuronal homeostasis is a highly dynamic process marked by an intense need for ATP, as ATP production is critical for the full functioning of motor proteins such as kinesin and dynein (10). As shown in Fig. 3C and D, the reduction of the ATP concentration in rVpr-treated neuronal...
progenitor cells appeared to have a direct impact on the velocity of mitochondrial transport. Furthermore, we found significantly smaller amounts of mitochondria in the neurites (Fig. 3E and G), while the amount of mitochondria in whole cells seemed to be unaffected (Fig. 3F). Therefore, the developmental arrest and inhibition of neurite extension that we observed earlier in this study (Fig. 1 and 2) likely were caused by the retarded mitochondrial transport, as mitochondrial transport in neurites has been known to be important for neuronal development (10). Within the CNS, mitochondria are enriched in regions of high metabolic demand, especially in synapses (10, 15, 47). The necessity of mitochondrial transport in neuronal development and homeostasis is becoming clear (10). During neuronal cell differentiation from undifferentiated neuroblasts, cells acquire many neuronal processes. From these processes, axonal and dendritic branches form, and then synaptic connections assemble (10). These highly dynamic processes need large amounts of ATP to be produced at locations where it is needed. Therefore, the appropriate trafficking of mitochondria is a necessary task beginning in the earliest steps of neuronal development (10). To examine the physiological function of mitochondria, such as the maintenance of its membrane potential or ATP synthesis, some mitochondrion-targeted drugs (such as FCCP) previously have been used, and those drugs induced mitochondrial membrane depolarization and inhibited mitochondrial transportation within axons (46).

The depolarization of the mitochondrial membrane potential and the inhibition of ATP synthesis caused retardation in mitochondrial transportation (10, 46). Therefore, the suppression of ATP synthesis following mitochondrial membrane depolarization by Vpr induced the retardation of mitochondrial transport into and within neurites, which may have arrested development.

Vpr is well known to induce apoptosis when a high concentration of Vpr is supplemented in culture or is exogenously expressed in cells (26, 27, 39, 41). It has been shown recently that Vpr induces cell cycle arrest following its binding to a large complex consisting of DDB1, Cul4A E3 ubiquitin ligase, and DDB1-Cul4A-associated factor 1 (8, 12, 13, 24, 33, 56, 59). Furthermore, synthetic Vpr peptides are found to directly bind to ANT, a component of the mPTP located on the inner mitochondrial membrane. As a result, a decrease of mitochondrial membrane potential and the release of cytochrome c are thought to induce the intrinsic apoptosis pathway (25, 26, 48). As shown in Fig. 3A, high concentrations of rVpr (100 pM and 1.0 nM) induced the severe depression of ∆Ψm in progenitor cells, and the percentage of caspase-3-activated cells was significantly increased (Table 1). In contrast, although low concentrations of rVpr (2.0 and 10 pM) induced the moderate depression of ∆Ψm, no significant percentage of caspase-3-activated cells was detected. Furthermore, in 1.0 nM rVpr-treated cells, a large amount of cytochrome c was released into the cytosol, although cytochrome c was hardly released in cells treated with 2.0 pM rVpr (Fig. 4D). These results suggest that high concentrations of rVpr induce apoptosis via the release of cytochrome c from mitochondria through the severe reduction of ∆Ψm. In contrast, probably because a low concentration of rVpr induces a moderate reduction of ∆Ψm, the release of cytochrome c and apoptosis did not take place. However, the moderate reduction of ∆Ψm caused by treatment with a low concentration of rVpr is able to induce neuronal developmental arrest.

It has been reported that a Vpr peptide (aa 71 to 82) directly binds ANT in vitro, and the critical amino acids for the binding were mapped to three residues, R73, R77, and R80. Mitochondrial membrane depolarization was not caused by Vpr mutants that lacked those amino acids or carried their point mutations (25, 26). As shown in Fig. 3A, we showed that soluble Vpr induced mitochondrial membrane depolarization in neuronal progenitor cells in a dose-dependent manner. As suspected, a Vpr mutant that had mutations at the critical amino acids for its binding to ANT and that had been reported to be incapable of causing mitochondrial membrane depolarization was not able to induce any inhibitory effects on neuronal progenitor cells, including mitochondrial membrane depolarization and the inhibition of neuronal development. In addition, not only rVpr-WT but also the mutant incapable of causing depolarization (rVpr-R73, 77, 80A) were localized at the mitochondrial fraction in neuronal progenitor cells (Fig. 4D). These results suggest that Vpr localizes at the mitochondria and induces the inhibition of neuronal development through mitochondrial membrane depolarization because of the interaction with ANT. In contrast, although rVpr-R73, 77, 80A also localizes at the mitochondria, this mutant may not interact with ANT and induce neuronal developmental arrest.

The mPTP is a large conductance channel of solutes up to 1.5 kDa in size that spans the outer and inner mitochondrial membranes, and the mPTP is composed of the inner membrane ANT, the outer membrane voltage-dependent anion channel, and matrix cyclophilin D. The mPTP frequently is open under pathological conditions such as ATP depletion and mitochondrial membrane depolarization (10, 11). It is possible that the mPTP is opened because of an interaction between ANT and Vpr (25). It has been shown that UQ inhibits mitochondrial depolarization by closing the mPTP through direct interaction at the mPTP binding site (40, 58). Furthermore, recently UQ has been reported to have a protective effect on neurotoxicity in vivo models of CNS diseases, including Parkinson’s diseases, Huntington’s disease, and amyotrophic lateral sclerosis, which all involve mitochondrial dysfunction (7). As shown in Fig. 5A, UQ was shown to restore the mitochondrial membrane potential and offer significant protection against rVpr, while the protection by a caspase-3 inhibitor, Z-DEVD-fmk, was not statistically significant. In addition, ATP production and mitochondrial transportation was recovered by treatment with UQ but not Z-DEVD-fmk (Fig. 5B and C). Even with the presence of Z-DEVD-fmk, UQ was able to significantly restore ∆Ψm, ATP synthesis, and the velocity of mitochondrial transportation. This indicates that the inhibition of neuronal development observed in this study was caused independently of caspase-3-mediated apoptosis.

In HIV-1 encephalopathy, neurocognitive impairment is related to the loss of the synaptodendritic connection (1, 14). Our data demonstrated that not only inhibition of neuronal development but also axonal disruption and atrophy and beading of dendrites were induced by soluble Vpr protein and HIV-1-infected macrophages in organotypic hippocampal slice cultures (Fig. 6 and 7). It was reported that a significant amount of Vpr protein, as high as the nanogram-per-milliliter range, was detected in the CSF of AIDS patients (44). With
some circulating soluble Vpr protein in CNS, Vpr probably causes damage to both mature and immature neurons. Mature neurons may be damaged because of axonal disruption or synaptodendritic injury, and immature neurons may lose the ability to mature. In healthy adult brain, progenitor cells derived from DG of the hippocampus differentiate into mature neurons and are incorporated into the hippocampal circuitry. However, in HIV-1 encephalopathy patients, even when mature neurons are damaged, progenitor cells may not be able to properly differentiate because of the mitochondrial dysfunction induced by Vpr. This might help the progression of hippocampus-dependent memory loss. Furthermore, we observed that low concentrations of soluble Vpr inhibited neuronal development and induced axonal disruption. It is possible that when low concentrations of Vpr infiltrate into the CNS, focal neuronal damage including axonal disruption and the inhibition of neuronal development are induced even if HIV-1-infected macrophages do not infiltrate into CNS tissues, and this may be a cause of mild neurocognitive disorder. In addition, in the pediatric patients who are affected by HIV-1-associated progressive epileptiform encephalopathy, neurological dysfunction and developmental delays are seen (52). In the pediatric brain, there are large numbers of neuronal progenitor cells compared to the amount in the adult brain, and our data suggest that Vpr is one of the factors that induces neuronal developmental delay in pediatric patients. Neurotoxic viral and/or cell-derived factors besides Vpr possibly have the potential to induce neuronal developmental retardation, and the pathological process of HIV-1 encephalopathy may be caused by their added effects. To elucidate the pathology of HIV-1 encephalopathy, it is important to identify those factors and to clarify these complicated processes. Our findings suggest that Vpr is one of the important factors that spurs on the progression of HIV-1 encephalopathy.

ACKNOWLEDGMENTS

We thank Naoko Misawa and Chuan-Nie for support in our study. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Culture, Sports, Sciences, and Technology of Japan and by grants for research on HIV-AIDS and health science from the Ministry of Health, Labor, and Welfare of Japan.

REFERENCES

VOL. 82, 2008 RETARDATION OF NEURONAL DEVELOPMENT BY HIV Vpr 2541

Downloaded from http://jvi.asm.org/ on May 1, 2016 by guest

