Ebola Virus VP30 Is an RNA Binding Protein

Sinu P. John,1 Tan Wang,2 Scott Steffen,3† Sonia Longhi,4
Connie S. Schmaljohn,3 and Colleen B. Jonsson2*†

Graduate Program in Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294;1 Department of Biochemistry and Molecular Biology, Southern Research Institute, Birmingham, Alabama 35205;2 U.S. Army Medical Research Institute of Infectious Diseases, Ft. Detrick, Maryland 21702; and Architecture et Fonction des Macromolécules Biologiques, UMR 6098 CNRS, and Universités Aix-Marseille I et II, Campus de Luminy, 13288 Marseille Cedex 9, France4

Received 15 November 2006/Accepted 31 May 2007

The Ebola virus (EBOV) genome encodes for several proteins that are necessary and sufficient for replication and transcription of the viral RNAs in vitro; NP, VP30, VP35, and L. VP30 acts in trans with an RNA secondary structure upstream of the first transcriptional start site to modulate transcription. Using a bioinformatics approach, we identified a region within the N terminus of VP30 with sequence features that typify intrinsically disordered regions and a putative RNA binding site. To experimentally assess the ability of VP30 to directly interact with the viral RNA, we purified recombinant EBOV VP30 to >90% homogeneity and assessed RNA binding by UV cross-linking and filter-binding assays. VP30 is a strongly acidophilic protein; RNA binding became stronger as pH was decreased. Zn2+, but not Mg2+*, enhanced activity. Enhancement of transcription by VP30 requires a RNA stem-loop located within nucleotides 54 to 80 of the leader region. VP30 showed low binding affinity to the predicted stem-loop alone or to double-stranded RNA but showed a good binding affinity for the stem-loop when placed in the context of upstream and downstream sequences. To map the region responsible for interacting with RNA, we constructed, purified, and assayed a series of N-terminal deletion mutations of VP30 for RNA binding. The key amino acids supporting RNA binding activity map to residues 26 to 40, a region rich in arginine. Thus, we show for the first time the direct interaction of EBOV VP30 with RNA and the importance of the N-terminal region for binding RNA.

Ebola viruses (EBOV) are nonsegmented, negative-stranded RNA viruses, which together with Marburg virus, constitute the family Filoviridae (18). Filoviruses cause severe and lethal hemorrhagic fevers in humans and nonhuman primates and, as such, are classified as biosafety level 4 (BSL-4) agents (11). Of the eight proteins encoded by the EBOV genome, the L protein, VP35, the N protein (NP), and VP30 are proposed to form a ribonucleocapsid complex, along with the genomic RNA (10, 28). The L protein bears the enzymatic activities required for transcription and replication, whereas VP30 and VP35 are implicated in regulation of transcription and replication (28, 41). Although the NP is necessary for transcription, its role is still unknown (28). Phosphorylation of VP30 positively regulates its binding to NP and negatively regulates its transcriptional activity (26). In addition, enhancement of transcription by VP30 requires a putative RNA secondary structure located within nucleotides (nt) 54 to 80 of the leader region (44). Deletion of the predicted RNA secondary structure permits VP50-independent transcription of viral messengers (44). These reported activities of VP30 suggest the possibility of a direct interaction of VP30 with EBOV RNA in its role in transcription. In addition, the N terminus of VP30 contains a Zn2+ binding Cys3-His motif (25) and is rich in basic amino acids (34), which can interact with nucleic acid, and provided impetus for our studies here. By analogy, a homologue of VP30, the M2-1 protein of human respiratory syncytial virus (hRSV), has a Cys3-His motif that binds hRSV leader RNA with an apparent dissociation constant of 90 nM (8, 14). Mutation of three cysteine residues of the Cys3-His motif led to a significant reduction of hRSV recovery (39).

Recent publications with the minigenome system for EBOV suggest at least two possible mechanisms that VP30 may use in its transcriptional regulatory role. One possible mechanism could be that VP30 interacts with one or more of the other nucleocapsid proteins, polymerase, NP or VP35, and promotes increased stability of the transcriptional complex. An increase in the number of active transcription initiation complexes or the increased stability of the transcriptional elongation complex would yield higher levels of mRNA, which is the reported role of VP30 (28). Muhlberger and coworkers looked for truncated transcripts to determine whether VP30 had a role in promoting transcriptional elongation but did not observe any differences in the presence or absence of VP30 (44). Alternatively, VP30 may interact directly with viral RNA(s) to regulate transcription. In this model, VP30 could operate in one or more ways, such as protection of synthesized transcripts from degradation and turnover, stabilization of the genomic template to enhance transcript synthesis by the polymerase, or binding to RNA to recruit the other nucleocapsid proteins. We test here the hypothesis that VP30 may directly interact with RNA and thereby promote transcription. We therefore searched the VP30 sequence for signatures and features typical of RNA-binding proteins. After having identified a putative
RNA binding motif within an intrinsically disordered region of VP30, we expressed EBOV VP30, along with a series of deletion constructs, in a bacterial expression system and purified them to homogeneity. We used UV cross-linking and linking-bias assays to examine their ability to bind RNA and demonstrate for the first time the RNA binding activity of EBOV VP30. We also mapped this activity to the N-terminal region of VP30.

MATERIALS AND METHODS

Bioinformatics analysis of EBOV VP30. The VP30 sequences used in the present study were retrieved from the VaZYMoLo (12) and RefSeq (30) databases. The accession numbers are as follows: VAZy178 (strain Zaire), VAZy399 (strain Reston), and NC_006432.1 (strain Sudan). Hydrophobic cluster analysis was carried out with the program DRAWHCA (5). Selective structure predictions were performed with PSI-PRED (24) and the Predict Protein Server (33). Prediction of NORS (for nonregular secondary structure) regions was done with the NORSp server (http://cubic.bioc.columbia.edu/services/NORSp) (23).

Prediction of NORS (for nonregular secondary structure) regions was done with the NORSp server (http://cubic.bioc.columbia.edu/services/NORSp) (23).

Construction of site-directed mutations in VP30. Primers were designed to introduce the site-directed mutations into pET-VP30 according to the QuikChange multi-site-directed mutagenesis kit from Stratagene (La Jolla, CA). The primer (IDT) sequences (nucleic acid substitutions underlined), named by the corresponding amino acid mutations, were: R28A, 5′-GAC CAC GTT CGA GCA GCA TCA TCA TCA AGG AGA TAT TAT C-3′; R32A, 5′-GAG CAC GAT CAT CCQ CGG AGA ATG ATC GAG GTG-3′; R36A, 5′-CAT CCA GAG AGA ATG ATG GTG AGT GTG ACC TTC AAT GAA-3′; R40A, 5′-GAA TTA TCG AGG TGA GTA GTC CCA TCA ATC AGG GAG GGC CTC AC-3′; R28A/R32A, 5′-GAG CAC GAT CAT CCQ CGG AGA ATG ATC GAG GTG-3′; and R32A/R36A/R40A, 5′-CAT CCA GAG AGA ATG ATG GTG AGT GTG ACC TTC AAT GAA-3′. Colonies were screened by DNA sequencing for the required mutations. The quadruple mutant, R28A/R32A/R36A/R40A, was constructed by sequential cloning of each mutation until all four were obtained in a single clone.

Exposure and purification of wild-type and mutant VP30. Wild-type and mutant VP30 proteins were expressed in BL21(DE3) cells by the autoduction method, as described by Studier (38). Tryptone and NZ amine was used instead of NZ amine in making ZYM 5052 media. For the optimization of autoinduction, cells were cultured in a 500-ml volume. Cells were harvested by centrifugation, lysed in 100 μl of 1× sample buffer (100 mM Tris [pH 6.8], 2% sodium dodecyl sulfate [SDS], 5% β-mercaptoethanol, 15% glycerol, 0.01 mg of bromophenol blue/ml, and 4 M urea), and subjected to SDS-polyacrylamide gel electrophoresis (PAGE). For the purification, bacterial cells were cultured in 500 ml of medium after 24 h and harvested by centrifugation at 30,000 g for 10 min. The pellet was resuspended in 15 ml of phosphate-buffered saline on ice. A total of 0.2 mg of lysosome (Sigma, St. Louis, MO) was added, and cells were lysed at 4°C for 45 min. Cells were further lysed by sonication for 10 min and sonication for 1 min, three times, with a 2-min interval on ice. Insoluble material was collected by centrifugation at 30,000 × g for 30 min. The resuspended 15 ml of buffer A (20 mM Tris [pH 8.0], 1 mM NaCl, 0.1 mM EDTA, 10 mM dithiothreitol [DTT], 1 mM of protease inhibitor cocktail [Sigma], and 5 mM imidazole) and mixed on a platform shaker for about 1 h at room temperature. The mixture was sonicated again as described above and centrifuged at 30,000 × g for 30 min at 4°C. The supernatant was collected and loaded onto 1 ml of Ni-NTA resin (Qiagen) which was pre-equilibrated with buffer A. The column was washed with 10 ml of buffer A and then 10 ml of buffer B containing 50 mM imidazole and 10 ml of buffer C containing 10 mM of buffer B containing 1 M imidazole. One-milliliter fractions were collected, examined by SDS-PAGE, and quantified by the Bradford method (Bio-Rad, Hercules, CA). The eluted fractions with approximately more than 90% purity were taken and diluted to a uniform concentration of 0.02 mg/ml and dialyzed consecutively against 2 liters of buffer B (40 mM HEPES [pH 7.4], 1 mM NaCl, 20 mM BME, protease inhibitor cocktail, 50 μM ZnCl2, 10% glycerol, and 0.1% CHAPS (3-(3-cholamidopropyl)-dimethylammonio) 1-propanesulfonate)) with 3, 2, 1, and 0 M urea each for 24 h at 4°C. The protein fractions were dialyzed twice at 4°C in 2 liters of buffer C (40 mM HEPES [pH 7.4], 200 mM NaCl, 1 mM DTT, protease inhibitor cocktail, 50 μM ZnCl2, and 10% glycerol) for a total of 24 h. Then, 0.76 μg of protein in 1× sample buffer was loaded for SDS-PAGE and Western blot analysis. For Western blot analysis of VP30, we used a mouse monoclonal anti-His tag antibody for the primary (Sigma) and an anti-mouse immunoglobulin G coupled with alkaline phosphatase for the secondary antibody. The alkaline phosphatase was developed in situ on nitrocellulose membrane with BCIP/NBT substrate (Sigma).

For additional purification of the VP30 by gel filtration, 3 ml of VP30 eluted from the Ni-NTA resin and dialyzed as described above was concentrated to 300 μl with a Centricon-10 (Millipore, Billerica, MA) and passed through a Sephacryl S400HR (Sigma) column pre-equilibrated with buffer A. The protein was collected with the column wash, and 1-ml fractions were collected. RNA substrates and 32P end labeling. RNAs were synthesized by IDT (Corvalle, IA) with the EBOV Zaire strain leader sequence (5′-UUUUGUGUGC GAAUAACAUAGGAGGAAGAUAAUAAUUUCCUCUC-N/NCBI accession no. AY354488). A total of 0.67 pmol of EBOV leader (L) (+)-36-80 RNA was

![Gene expression and purification](http://jvi.asm.org/Downloaded from Jan 24, 2018 by guest http://jvi.asm.org/)
end labeled with poly-nucleotide kinase (New England Labs, Ipswich, MA) in a 150-μl reaction for 1 h in nuclease-free buffers with 0.2234 μCi of [γ-32P]ATP (Perkin-Elmer, Wellesley, MA) at 37°C. 32P-unlabeled nucleotides were removed by passing the reaction through a G-25 spin column (Perkin-Elmer). The RNA was heated for 15 min at 85°C and cooled to 4°C slowly (0.1°C/min) in a thermocycler in 150 mM NaCl. Typically, the probe had a specific activity of 0.1625 μCi/μmol RNA.

UV cross-linking. In a standard reaction, a 49 nM concentration of 32P end-labeled RNA was preincubated with 142 nM VP30 in nuclease-free reaction buffer (40 mM HEPES [pH 7.4], 150 mM NaCl, 25 mM KCl, 1 mM DTT, and 5% glycerol) at 37°C for 15 min. The RNA-VP30 complexes were covalently cross-linked by exposing binding reactions to 1.8 kJ of UV light (Hoeffer VUC300, GE Health Care Biosciences Corp., Piscataway, NJ). Unbound RNA was digested with 50 U of RNase A (Ambion, Austin, TX) at 37°C for 30 min. Reactions were stopped by adding 5% sample buffer (1× sample buffer is 100 mM Tris [pH 6.8], 2% SDS, 5% β-mercaptoethanol, 15% glycerol, 0.01 mg of bromophenol blue/ml, and 4 M urea). Reactions were heated to 95°C and separated by SDS–12% PAGE. Gels were dried, and the results were visualized by exposure to autoradiographic film or by using a Storm 840 phosphorimager (GE Healthcare Bio-Sciences Corp., Piscataway, NJ). Signals were quantified by using ImageQuant TL (GE Healthcare Bio-Sciences Corp.).

Filter binding. VP30 protein was serially diluted in buffer C and incubated with RNA at 37°C for 15 min in reaction buffer (40 mM HEPES [pH 7.4], 150 mM NaCl, 25 mM KCl, 1 mM DTT, and 5% glycerol). The reactions were slot blotted onto nitrocellulose membrane (0.2-μm pore size; Bio-Rad), which was prewet with reaction buffer at room temperature. Membranes were washed with 250 μl of reaction buffer and air dried. Background contribution of nonspecifically bound RNA was measured by filtering the whole reaction in the absence of chelator treatments, 15 μM 1,10-phenanthroline in dimethyl sulfoxide (DMSO; 10% total) were preincubated with VP30 in nuclease-free reaction buffer for 15 min before the addition of the end-labeled RNA. A reaction with 10% DMSO without chelators was included as a positive control.

Expression and purification of VP30. EBOV VP30 was expressed in BL21(DE3) cells, and expression was controlled by the autoinduction method as previously described (38). Optimum induction occurred after a 24-h incubation at 37°C (data not shown). Additional incubation to 48 h did not yield higher levels of recombinant protein. Most of the VP30 protein was expressed as inclusion bodies, and we were unable to identify conditions that resulted in soluble recombinant protein (data not shown). Thus, we used denaturing conditions to purify VP30, since native conditions failed to purify it (data not shown). Nickel affinity chromatography was used in the purification procedure (Fig. 2A). Yields typically ranged from 200 to 280 μg from a 500-ml culture. The protein fractions were refolded by using a slow renaturation procedure that we have used successfully for several retroviral integrases (1, 2, 15, 42) and hantaviral N proteins (16, 36). Human immunodeficiency virus type 1 (HIV-1) integrase was included as a refolding control in each purification, as well as the vector alone, which provided a negative control for subsequent studies. Since VP30 has been shown to be a Zn2⁺ binding protein (25), we included Zn2⁺ ion in all of the buffers used for refolding.

RESULTS

Bioinformatic analysis of VP30. Examination of the EBOV (strain Zaire) VP30 sequence using hydrophobic cluster analysis, revealed the presence of two structured domains (amino acids [aa] 45 to 119 and 141 to 267), typically enriched in hydrophobic clusters (Fig. 1A). Three disordered regions depleted in such clusters were observed: they span residues 1 to 44, 120 to 140, and 268 to 288 (Fig. 1A). Hydrophobic cluster analysis carried out on two other EBOV VP30 sequences (strains Reston and Sudan) revealed the same overall modular organization as for the Zaire strain (data not shown). The three intrinsically disordered regions were also predicted by using ab initio methods as detailed in Materials and Methods. Analysis of the 1-50 region by the net charge/hydrophobicity method (40) confirmed that this region is intrinsically unstructured. Analysis of the deviation in amino acid composition of the disordered N-terminal region indicated that it is depleted in order-promoting residues (W, C, Y, V, I, L and F) and enriched in disorder-promoting residues (R, G, Q, P, K, E, D, and S), with arginine being highly over-represented (four times more represented than in globular proteins) (data not shown).

Further, there was no predicted secondary structure elements in the 1-50 region (Fig. 1B). A region with no regular secondary structure and exposed to the solvent is predicted within aa 1 to 97. However, the presence of a Cys3-His type zinc-finger motif in the 72-90 region (Fig. 1B) prevents meaningful predictions of disorder within this latter region. Indeed, metal-binding regions may have features of disordered regions but can be stabilized upon binding to ions, thus leading to gain of structure (40).

It has long been noticed that PONDR can highlight potential molecular recognition elements; these elements are regions within an intrinsically disordered protein that have a propensity to bind to a partner and thereby to undergo induced folding (i.e., a disorder-to-order transition) (3, 4, 13, 29). Potential binding sites appear as sharp drops in the middle of long disordered regions (for examples, see reference 29). Notably, analysis of the PONDVR VL-XT prediction for the 1-45 region indicates the presence of such a drop within residues 26 to 32 (Fig. 1A), supporting a predicted role for this short stretch in binding to a partner/ligand. The occurrence of a zinc-finger motif—an evolutionarily conserved motif in proteins with RNA processing functions—downstream of the N-terminal intrinsically disordered region, together with the enrichment in arginine residues, supports the hypothesis that the ligand could be RNA. Notably, the hydrophobic cluster analysis indicates that the 26-32 region does not exhibit clear structural propensities, suggesting that this region could be involved in a disorder-to-order transition upon binding to RNA without, however, gaining any regular secondary structure elements.

Altogether, these results suggest that the N-terminal region of VP30 has the sequence properties that typify intrinsically disordered regions and possesses a putative binding site within residues 26 to 32. This site may act in synergy with the zinc-finger motif located in the proximity.

Expression and purification of VP30. EBOV VP30 was expressed in BL21(DE3) cells, and expression was controlled by the autoinduction method as previously described (38). Optimum induction occurred after a 24-h incubation at 37°C (data not shown). Additional incubation to 48 h did not yield higher levels of recombinant protein. Most of the VP30 protein was expressed as inclusion bodies, and we were unable to identify conditions that resulted in soluble recombinant protein (data not shown). Thus, we used denaturing conditions to purify VP30, since native conditions failed to purify it (data not shown). Nickel affinity chromatography was used in the purification procedure (Fig. 2A). Yields typically ranged from 200 to 280 μg from a 500-ml culture. The protein fractions were refolded by using a slow renaturation procedure that we have used successfully for several retroviral integrases (1, 2, 15, 42) and hantaviral N proteins (16, 36). Human immunodeficiency virus type 1 (HIV-1) integrase was included as a refolding control in each purification, as well as the vector alone, which provided a negative control for subsequent studies. Since VP30 has been shown to be a Zn2⁺ binding protein (25), we included Zn2⁺ ion in all of the buffers used for refolding.

High-molecular-mass bands, higher than that expected for VP30, were observed in all preparations of VP30 at approximately 100, 135, and 250 kDa (Fig. 2A). In addition, these higher molecular mass bands were detected by Western blot analysis of the VP30 protein with an anti-His6 antibody (Fig.
The fractions from the Ni-NTA chromatography were pooled, dialyzed, concentrated to 300 μl, and gel filtrated through a 50-ml Sephacryl 200 column in buffer A (data not shown). Analysis of the eluted fractions showed the presence of the higher-molecular-mass complexes, which suggested that they were oligomers of VP30. To confirm the identity of the bands, the high-molecular-mass bands visualized in SDS-PAGE analyses were isolated, and their identity was confirmed by matrix-assisted laser desorption ionization–time of flight spectroscopy. The protein match searches for each of the four major bands visualized by SDS-PAGE (Fig. 2A) matched the EBOV VP30 with a protein score of 101 to 105 (data not shown). The presence of the higher-molecular-mass bands in the SDS-PAGE suggests that VP30 forms stable oligomers, since strong denaturing conditions of 4 M urea in the 1× sample buffer and boiling were not able to dissociate the oli-

2B). The fractions from the Ni-NTA chromatography were pooled, dialyzed, concentrated to 300 μl, and gel filtrated through a 50-ml Sephacryl 200 column in buffer A (data not shown). Analysis of the eluted fractions showed the presence of the higher-molecular-mass complexes, which suggested that they were oligomers of VP30. To confirm the identity of the bands, the high-molecular-mass bands visualized in SDS-PAGE analyses were isolated, and their identity was confirmed by matrix-assisted laser desorption ionization–time of flight spectroscopy. The protein match searches for each of the four major bands visualized by SDS-PAGE (Fig. 2A) matched the EBOV VP30 with a protein score of 101 to 105 (data not shown). The presence of the higher-molecular-mass bands in the SDS-PAGE suggests that VP30 forms stable oligomers, since strong denaturing conditions of 4 M urea in the 1× sample buffer and boiling were not able to dissociate the oli-

FIG. 1. (A) The top panel shows a hydrophobic cluster analysis plot of Zaire EBOV VP30 (accession no. VAzy178). Conventions are explained (or detailed) in the caption. Globular regions are characterized by a thick distribution of hydrophobic clusters, while unstructured regions are poor or devoid of hydrophobic clusters. Consistently predicted disordered regions are indicated by a black bar under the plot. The bottom panel shows a PONDR VL-XT prediction of the region spanning residues 1 to 45. The threshold of significance for disorder prediction is set to 0.5. The sharp drop in the prediction, encompassing residues 26 to 32, is indicated by a pink bar. These latter residues are also highlighted in the hydrophobic cluster analysis plot using the same color code. (B) Primary structure of Zaire EBOV VP30 (accession no. VAzy178). Consistently predicted disordered regions are underlined. Residues belonging to the potential RNA binding site are indicated in pink, while residues building up the Cys3-His zinc finger are indicated in green. Predicted secondary structure elements are also shown.
gomers completely. Overall, these results reflect a purity of ca. 90%, as determined by SDS-PAGE analysis.

Analysis of RNA-VP30 interaction. VP30-dependent transcriptional activity depends on an RNA secondary structure formation at the position encompassing nt 54 to 80 in the antigenome (44). We hypothesized that VP30 may interact directly with RNA within this leader region. A synthetic RNA probe of the EBOV leader (nt 36 to 80), EBOV L(+)/36-80, was used to probe the ability of VP30 to interact with RNA. We used the positive-sense viral RNA since we hypothesized a transcriptional control through a posttranscriptional mechanism. EBOV L(+)/36-80 contains the predicted secondary structure (54–80) and has an additional 18-nt extension at the 5’ end (Fig. 3A). The RNA and VP30 were assembled in nuclease-free reaction mixtures at 37°C for 15 min, which was followed by UV irradiation, and then subjected to autoradiography. Autoradiography revealed a major band of 35 kDa, together with some additional higher-molecular-mass bands (Fig. 3B, lane 3), which correspond to the VP30-RNA complex monomer and oligomer conformations of VP30. A bacterial culture with vector alone was included as a mock purification for possible background contaminants. These protein preparations did not show any detectable bands in the UV cross-linking assay (Fig. 3B, lane 1). In addition, bovine serum albumin, included as a negative control, was not able to form a complex with the RNA probe (Fig. 3B, lane 2). We also used a nonspecific RNA (NS RNA) in these studies. The NS RNA was obtained through a reiterative process of submitting sequences to MFOLD that might minimize secondary structures and to contain a higher concentration of C rather than G. This NS RNA showed lower binding levels in comparison to an EBOV-specific RNA for competing with VP30-RNA complex in a filter-binding assay (Fig. 3Aiii and C). This shows that VP30-RNA interaction is more specific to EBOV RNAs.

Optimization of ionic strength, metal ion, and pH in VP30-RNA binding assays. The reaction conditions for the interaction of VP30 with RNA were titrated with NaCl, pH, and magnesium to optimize RNA binding levels. The NaCl concentration was titrated from 50 to 400 mM, and the potassium chloride concentration was titrated from 100 to 0 mM. The highest level of VP30-RNA interaction was observed at 150 mM NaCl and 25 mM KCl (data not shown). The RNA binding activity was reduced to the nondetectable levels when NaCl concentrations reached 400 mM.

Mg^{2+} ion concentrations were also examined from 0 to 12.5 mM, with salt concentrations at 150 mM NaCl and 25 mM KCl. The reaction without Mg^{2+} ion showed the highest activity, with threefold-higher activity than the reaction performed at 1.25 mM MgCl₂ (data not shown). The increase in Mg^{2+} ion concentration to 12.5 mM reduced the activity significantly (data not shown).

The optimal pH was assessed from pH 5.8 to 9.3 in reactions of VP30 and EBOV L(+)36-80 RNA. No Mg^{2+} was used in
these reactions, and the salt concentrations were held at 150 mM NaCl and 25 mM KCl. The lowest pH tested had the highest activity, suggesting that low pH values favor the VP30-RNA interaction (data not shown).

Requirement of Zn$^{2+}$ ion. VP30 has been shown to be a Zn$^{2+}$ binding protein by colorimetric assays (25). To test whether Zn$^{2+}$ was required for the RNA binding activity of VP30, we refolded denatured Ni-affinity-purified VP30 in the presence or absence of ZnCl$_2$. VP30 was refolded in two sets, with one set having 50 μM ZnCl$_2$ in the buffer and the other set without ZnCl$_2$ but with 10 mM EDTA. Both sets had the same concentrations of wild-type VP30 protein and were dialyzed at 4°C with stepwise lowering of urea concentration as described in Materials and Methods. The protein refolded in the presence of EDTA had only negligible binding activity (Fig. 4A, lane 4). However, the protein refolded in the presence of ZnCl$_2$ bound RNA (Fig. 4A, lane 3). In addition, we tested the Zn$^{2+}$ chelators, 1,10-phenanthroline, and as a control, the structural analog 1,7-phenanthroline. Hence, 1,10-phenanthroline chelates Zn$^{2+}$ very effectively and should ablate RNA binding ability if the Zn$^{2+}$ binding Cys$_3$-His$_3$ motif is involved. However, its structural analog 1,7-phenanthroline has no significant chelating abilities and should not interfere with Zn$^{2+}$ chelation and this motif (20). Only reactions with the nonchelating 1,7-phenanthroline showed VP30-RNA binding (Fig. 4B). The positive control reaction with 10% DMSO had no significant difference in activity compared to the reaction without (Fig. 4B, lanes 3 and 4).

Specificity of VP30’s interaction with RNA. To further examine the substrate preferences of VP30, substrates were designed within the region of nt 34 through 95 so as to create substrates with the stem-loop, double-stranded RNAs, as well as substrates with 3’ or 5’ extensions of the stem-loop (Fig. 5A and 5A). In addition to the secondary structure predicted at the position from nt 56 to 79, an additional stem-loop is predicted with MFOLD for EBOV L(51-95) sequence showed a secondary structure from nt 38 to 60, a single-strand region from 60 to 80, and two nucleotide extensions at the 5’ end (Fig. 5A). EBOV L(51-95) has a 3’ single-strand extension of 17 nt in addition to 5 nt at the 5’ end, prior to the single secondary structure from 56 to 79 (Fig. 5A). EBOV L(51-95) has a 5-nt extension at the 3’ end and a 17-nt extension at the 5’ end in addition to the secondary structure. Two alternate MFOLD structures were predicted for EBOV L(51-95), one with a second stem-loop structure at the 5’ end (Fig. 5A) and (iv). EBOV L(54-80) had minimal 5’ or 3’ extensions predicted within its secondary structure (Fig. 5A). EBOV L(54-80) was predicted to have two nucleotide extensions at both ends (Fig. 5A). Double-stranded RNAs were prepared by mixing together these complementary RNAs.
Filter-binding assays were used to explore the substrate preference of VP30. For comparison purposes, the filter-binding signal obtained for the probe EBOV L(+)-36-80 was taken as 100%, and the relative signal was calculated for the other RNAs. Surprisingly, only the substrates that were predicted to have either 5’ or 3’ extensions from the secondary stem-loop structure showed VP30 binding activity (Fig. 5B, lanes 1, 2, 4, and 5). The RNA substrate with the shortest 5’ or 3’ extension had only negligible activity (Fig. 5B, lanes 7 and 8). Finally, we tested the interaction of VP30 with double-stranded RNA. Double-stranded RNAs showed only negligible activity compared to the single-stranded RNA probes (Fig. 5B, lanes 3, 6, and 9). Taken together, these data suggest that VP30 had very low affinity to the predicted stem-loop or to double-stranded RNA.

The RNA interacting domain of VP30 maps to N terminus. VP30 has a highly basic N terminus, which also contains a Zn$^{2+}$ binding motif as mentioned previously (25, 34). Indications provided by the bioinformatics analysis for EBOV VP30, together with the observed higher affinity for RNA at low pH values, suggested a role for the N terminus in this interaction. To test this hypothesis, we constructed a series of deletion mutations in the N terminus. Each mutant was purified under identical conditions and refolded at the same concentration as that of the wild-type protein (Fig. 6A). Three independent experiments yielded 90% or more homogeneous protein. As with the wild-type VP30, higher oligomeric complexes were detected by SDS-PAGE analysis of mutant proteins (Fig. 6A).

The purified VP30 mutant proteins were examined for their ability to interact with RNA at a concentration of 0.2 μg each in a 40-μl total volume by using UV cross-linking assay. Only the mutant proteins, VP30Δ1-11 and VP30Δ1-26, were active for RNA binding by UV cross-linking. The proteins with deletions from positions 27 through 106 had no detectable RNA binding activity (Fig. 6B). This suggests that the amino acids at the positions from 27 to 40 are important for the RNA interaction. To explore the potential of the arginine residues within this region to be involved in the observed RNA binding, we made the following VP30 mutants; R28A, R32A, R36A and R40A. Each mutant was purified and refolded under identical conditions and concentrations as that of the wild-type protein (Fig. 7B). In addition to the single mutants, we made a double mutant (R28A/R32A), a triple mutant (R28A/R32A/R40A), and a quadruple mutant (R28A/R32A/R36A/R40A). We used UV cross-linking and/or filter binding to probe the activity of each mutant (data not shown). Three of the single amino acid mutants—R28A, R32A, and R36A—showed an RNA binding activity similar to the wild-type VP30; however, the binding activity of R40A was reduced fourfold (Table 1). The apparent K_d values were measured by filter binding since UV cross-linking does not provide this level of sensitivity.

Binding affinity of the wild type and substitution mutants of VP30. The apparent dissociation constants of the wild-type VP30 protein was calculated from the filter-binding assay data. EBOV L(+)-36-80 RNA (7.9 nM) was titrated with increasing concentrations of WT VP30 (9.52 × 10$^{-11}$ M to 5.2 × 10$^{-7}$ M). The apparent dissociation constants of VP30 mutants R28A, R32A, R36A, and R40A were calculated by titrating EBO L(+)-36-80 RNA (7.9 nM) with purified mutant proteins (6.0 × 10$^{-11}$M to 8.6 × 10$^{-11}$ M) using a filter-binding assay. The apparent K_d, determined as the concentration at which half-saturation is obtained, was averaged and calculated from three replicate values by using the Origin program (Fig. 7A and Table 1).

DISCUSSION

Several lines of evidence suggested a direct interaction of VP30 with RNA in its role in transcriptional regulation of EBOV. As a first step toward studying the function of VP30, we carried out a bioinformatics analysis of the VP30 sequence in order to unveil possible RNA-binding motifs. This led us to identify three intrinsically disordered regions. Further analysis of the N-terminal disordered region pointed out the presence of a short amino acid stretch (residues 26 to 32) possibly involved in binding to a ligand. The presence of a zinc-finger motif downstream of this binding motif, as well as the relative enrichment of this region in arginine residues, suggests that the ligand could be RNA. After purifying a series of EBOV VP30 deletion proteins, we experimentally confirmed this prediction. The results presented here represent the first report of the biochemical purification of the EBOV VP30 protein and of its RNA binding activity.
Denaturation followed by renaturation has been adopted previously for the elucidation of RNA binding activity of the hRSV M2-1 protein (8). A similar method was adopted for the purification of highly insoluble VP30 protein. The VP30 protein was shown to have a strong propensity to form oligomers, as judged by both SDS-PAGE and gel filtration. The purity of the protein was estimated to be 90%. Two assays, UV cross-linking and filter binding, were developed to assess VP30’s ability to interact with RNA.

The RNA interaction observed in vitro was independent of the presence of Mg$^{2+}$ ions. However, the binding activity of VP30 was dependent on the presence of Zn$^{2+}$ ion that was added during refolding of the protein. Moreover, preincubation of the protein refolded in the presence of Zn$^{2+}$ with Zn$^{2+}$ chelators abolished the RNA binding activity. Interaction of VP30 with RNA was strongly dependent on pH, and higher RNA binding activity was observed at a lower pH. It is possible that at the lower pH, the highly basic amino acids at the N terminus become more protonated and thus provide more affinity for the VP30 for interaction with the negatively charged RNA. The RNA binding was observed at the low ionic concentration range tested, with the higher ionic strength abrogating the RNA interaction completely.

One of the important characteristic features of filoviral transcription start signals is that each has a predicted stable RNA secondary structure (27, 34). Even though the function of most of these secondary structures is not known, the transcriptional activity of EBOV requires VP30 and the presence of sequences surrounding the transcription initiation site of NP gene in the leader region (44). We hypothesized that VP30 binds to the stem-loop of the leader sequence. However, we determined that VP30 had a lower binding activity for the stem-loop region or double-stranded RNA, suggesting that VP30 does not bind to the stem or loop region in the leader RNA. Our data suggest that the 3′ or 5′ extensions were required for VP30 binding, which implies that VP30 interacts outside the stem-loop or that these regions may require the formation of complex structures with the step-loop. It may also simply require a free 5′-end.

With the exception of EBOV L(+)-36-80 and EBOV L(−)-51-95, all substrates had only linear 3′ or 5′ extensions based on MFOLD predictions. However, both EBOV L(+)-36-80 and EBOV L(−)-51-95 probes had single-strand regions predicted in the 5′ extensions. This suggests that VP30 may require the regions within the predicted single-strand regions of the RNA substrates. Weik et al. have previously shown that the deletion of the stem-loop destroys the VP30-dependent transcription (44). Recently, it has been shown that VP35, another key component required for the transcription and replication of EBOV, binds double-stranded RNA (6). It is possible that the VP30 acts as a regulator for VP35 and prevent VP35 stalling at the double-strand regions of the RNA, by virtue of its lower affinity for such regions, and thus allowing transcription to continue. Further studies are needed to completely elucidate the role of VP30 in EBOV transcription.

The presence of the Cys$_3$-His motif and the enrichment in basic amino acids in the N terminus led us to postulate that the RNA interacting domain of VP30 is in the N terminus. Experiments showed that VP30 proteins with N-terminal deletions from 26 to 40 were inactive for RNA binding. This strongly suggests that residues 26 to 40 are important for VP30 interaction of VP30. VP30 has tyrosine (35 and 39) as well as arginine (28, 32, 36, and 40) residues therein. Moreover, the RXRXXXS motif spanning residues 27 to 33 of EBOV VP30 is highly conserved in filoviruses (Fig. 8). Notably, R40A, but none of the other arginine residues, showed an ~4-fold increase in its K_d, which suggests its involvement in RNA binding. Furthermore, our Zn$^{2+}$ chelation studies suggest that Cys$_3$-His motif also plays a role in RNA binding. The absence of RNA binding activity of the proteins, VP30Δ1-40 and VP30Δ1-59, which still possess the Cys$_3$-His motif, suggests

![FIG. 7. (A) Saturation curve of VP30. VP30 was titrated from 9.52 × 10$^{-11}$ M to 5.2 × 10$^{-7}$ M with 7.9 nM 5′-end-labeled EBOV L(+)-36-80 RNA. The percentage of total RNA bound is plotted against the concentration of VP30 in a logarithmic scale. The y axis shows the percentage of RNA bound, and the x axis shows the molar concentration of VP30. (B) VP30 and VP30 mutants purified by nickel affinity chromatography. A prestained molecular mass marker is shown in lane 1.](https://example.com/fig7.png)

Table 1. Apparent dissociation constants for wild-type VP30 and substitution mutants of VP30

<table>
<thead>
<tr>
<th>Protein</th>
<th>K_d (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild-type VP30</td>
<td>61</td>
</tr>
<tr>
<td>R28A</td>
<td>73</td>
</tr>
<tr>
<td>R32A</td>
<td>92</td>
</tr>
<tr>
<td>R36A</td>
<td>65</td>
</tr>
<tr>
<td>R40A</td>
<td>255</td>
</tr>
</tbody>
</table>
that a Cys$_2$-His motif alone does not have RNA binding activity. Hence, the RNA binding domain may result from three-dimensional arrangement of these two regions. The fact that the binding domain of M2-1 protein of hRSV was mapped to aa 59 to 85 within the N terminus (8). The Cys$_2$-His domain of M2-1 protein present in the first 30 amino acids was not required for the RNA binding activity of M2-1 (8). Interestingly, residues 29 to 31 and serine residues at positions 42, 44, and 46 have been shown to be phosphorylated and involved in modulating the transcriptional activity of EBOV VP30 (26). Hence, phosphorylation of VP30 might lead to a block in RNA binding activity and thus of transcription.

The dissociation constant of VP30-RNA interaction was comparable to the dissociation constants calculated for the M2-1 protein of hRSV-RNA interaction (8) and for other viral RNA binding proteins of RNA viruses. For example, the dissociation constant of Hantaan virus nucleocapsid protein has been reported to be 14 nM when the sodium chloride concentration was kept at 100 mM (35). Similarly the purified HIV-1 Tat protein interacts with TAR RNA with an apparent dissociation constant of 10 nM (37). The NS1 protein of influenza A virus on the other hand, interacts with double-stranded RNA with an apparent dissociation constant of 1 pM (7). Comparison of these dissociation constants shows that VP30 binds RNA with a rather high affinity, which is comparable to that of other RNA binding proteins of RNA viruses.

In summary, we show for the first time the direct interaction of VP30 with RNA. In addition, we show the importance of the N-terminal region of VP30 for this activity and the lower affinity of VP30 for stem-loop and double-stranded RNA regions. Current efforts are under way to build upon these biochemical studies in order to further elucidate the role of the RNA binding domain using the minigene reporter systems. The information obtained here will prove valuable in mapping these complex interactions within the context of the cell.

A structural study either by nuclear magnetic resonance or X-ray crystallography of VP30 will be important in elucidating the role of the two regions shown here to be involved in RNA binding.

ACKNOWLEDGMENTS

This study was performed and funded under a collaborative agreement between USAMRIID and SRI project no. 1119. This study was performed while S.S. held a National Research Council postdoctoral fellowship at USAMRIID.

REFERENCES

