Scalable Generation of High-Titer Recombinant Adeno-Associated Virus Type 5 in Insect Cells

Masashi Urabe, Takayo Nakakura, Ke-Qin Xin, Yoko Obara, Hiroaki Mizukami, Akihiro Kume, Robert M. Kotin, and Keiya Ozawa

Division of Genetic Therapeutics, Jichi Medical School, Tochigi 329-0498, Japan; Department of Molecular Biodefense Research, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan; and Laboratory of Biochemical Genetics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland

Received 14 June 2005/Accepted 27 November 2005

We established a method for production of recombinant adeno-associated virus type 5 (rAAV5) in insect cells by use of baculovirus expression vectors. One baculovirus harbors a transgene between the inverted terminal repeat sequences of type 5, and the second expresses Rep78 and Rep52. Interestingly, the replacement of type 5 Rep52 with type 1 Rep52 generated four times more rAAV5 particles. We replaced the N-terminal portion of type 5 VP1 with the equivalent portion of type 2 to generate infectious AAV5 particles. The rAAV5 with the modified VP1 required α2-3 sialic acid for transduction, as revealed by a competition experiment with an analog of α2-3 sialic acid. rAAV5-GFP/Neo with a 4.4-kb vector genome produced in HEK293 cells or S9 cells transduced COS cells with similar efficiencies. Surprisingly, S9-produced humanized Renilla green fluorescent protein (hGFP) vector with a 2.4-kb vector genome induced stronger GFP expression than the 293-produced transduction of murine skeletal muscles with S9-generated rAAV5 with a 3.4-kb vector genome carrying a human secreted alkaline phosphatase (SEAP) expression cassette induced levels of SEAP more than 30 times higher than for 293-produced vector 1 week after injection. Analysis of virion DNA revealed that in addition to a 2.4- or 3.4-kb single-stranded vector genome, S9-rAAV5 had more-abundant forms of approximately 4.7 kb, which appeared to correspond to the monomer duplex form of hGFP vector or truncated monomer duplex SEAP vector DNA. These results indicated that rAAV5 can be generated in insect cells, although the difference in incorporated virion DNA may induce different expression patterns of the transgene.

Recombinant adeno-associated virus (rAAV) is being developed as a gene transfer vector. rAAV based on serotype 2 (rAAV2) successfully transduces nondividing cells, including muscle, liver, and brain cells (29). Conventional rAAV production requires packaging of rAAV DNA into type 2 capsids by transient transfection of HEK293 cells with two or three plasmids: an AAV helper plasmid encoding rep and cap genes devoid of inverted terminal repeat (ITR) sequences, a vector plasmid harboring the therapeutic gene between ITRs, and an adeno virus helper plasmid expressing E2A, virus-associated (VA) RNA, and E4orf6. Transient cotransfection is the major limitation for scale-up of rAAV production. Since rAAV can be purified using column chromatography, which can result in highly purified rAAV while eliminating other contaminating viruses, some efforts were made to develop rAAV production systems by using recombinant mammalian viruses such as adenovirus (10) or herpes virus (4) which do not rely on the plasmid transfection and therefore may be amenable to scale-up production.

Recombinant baculoviruses based on the Autographa californica nuclear polyhedrosis virus are widely employed for production of heterologous proteins in cultured insect cells. The highly active, late A. californica nuclear polyhedrosis virus promoters, such as polyhedrin and p10 promoters, regulate the expression of heterologous proteins, resulting in large amounts of foreign proteins. Insect cells may be grown in suspension cultures in volumes ranging from shake flasks of sizes from, e.g., 50 to 400 ml, up to commercial-size bioreactors, e.g., 1,000 liters and larger. Recently, we described a highly scalable and efficient method for packaging rAAV2 in insect cells by use of baculovirus expression vectors (31). The ease of scale-up production is perhaps the most attractive feature of this production system. Infection of insect cells in suspension culture with recombinant baculoviruses eliminates the transfection process. Standard downstream processing to recover rAAV, such as tangential flow filtration and column chromatography, is readily applied.

In addition to vectors derived from serotype 2, other serotypes, utilizing different cell surface receptors, constitute a vector set from which an appropriate vector can be selected for a specific application. AAV5 is the most divergent dependovirus characterized (2), and type 5 AAV vectors have desirable properties that differ from other serotype vectors. AAV5 utilizes different receptors from other serotypes (14, 30), and rAAV5 has demonstrated different tropism from AAV2 (5), thus making it worthwhile to establish a method to produce rAAV5 in insect cells.

AAV is a member of the family Paroviridae. The genome of AAV is a linear, single-stranded DNA of 4.7 kb in length. The ITRs flank the unique coding sequences for the nonstructural replication initiator proteins, Rep, and the structural capsid proteins, VP. The ITRs serve as origins of DNA replication and may also function as the packaging signal. Type 2 Rep78 is generated by the p5 promoter, while Rep68 is translated from spliced mRNA from the p5 promoter. The small Rep polypep-
tides Rep52 and Rep40 are expressed by the p19 promoter with nonspliced or spliced mRNA. The p40 promoter regulates expression of capsid proteins VP1, VP2, and VP3. Alternate usage of two splice sites and translation of VP2 at a non-AUG codon results in a stoichiometry of 1:1:10 of VP1, VP2, and VP3. Both p5 proteins Rep78 and Rep68 are AAV origin binding proteins, and the presence of either is required for AAV DNA replication and processing replicative intermediates of the virus DNA (13). Also, either Rep52 or Rep40 is necessary for packaging the single-stranded, linear virion genome into preformed empty capsids (17). The transfection map of type 5 AAV differs from that of type 2; the p7 promoter or p19 promoter transcribes mRNA for Rep78 or Rep52. Type 5 AAV does not encode the spliced form of Rep polypeptides Rep68 and Rep40 (25). Structural protein VP1 is a minor constituent in the AAV capsid. But the VP1-unique portion of approximately 140 amino acid residues is highly conserved among different serotypes and has a phospholipase \(\alpha \) motif. The YXGGX and HDXXY motifs (where X is any amino acid residue) in phospholipase \(\alpha \) family hydrolyze the ester bond at the 2-acyl ester position of glycerophospholipids in the presence of \(\text{Ca}^{2+} \) and are involved in many aspects of cellular pathways, such as lipid membrane metabolism and signal transduction pathways (1, 21). The VP1-unique portion of parovirus is required for transfer of the virus from late endosomes to the nucleus (36). A mutant virus lacking the VP1-unique portion or the activity of phospholipase is not processed properly, and thus no virus or vector genes are expressed.

In the present study, we describe a recombinant AAV5 production system based on recombinant baculovirus and insect cells. In order to achieve high production levels of rAAV5 particles, we replaced a portion of the VP1 polypeptide with the corresponding portion of type 2. The VP1 substitution did not alter the tropism of rAAV5, which behaved indistinguishably from rAAV5 with wild-type VP1. In an attempt to improve the yields of rAAV5 particles, we used type 1 Rep52 instead of type 5, which resulted in the production of more than 5 \(\times 10^{10} \) vector genomes (vg) per cell.

MATERIALS AND METHODS

Plasmid construction. A flow chart of plasmid construction is shown in Fig. 1. pSR485 is an AAV5 vector plasmid harboring green fluorescent protein (GFP) and neomycin (Neo) genes between the ITRs (27). NotI sites were introduced outside the GFP/Neo expression cassette by PCR amplification using primers 5'-GATTTTAAT were annealed to each other and inserted into the PacI-NcoI sites of pFastBac Dual (pFBD). The type 5 Rep78 gene was PCR amplified with primers 5'-GCGCTTAATTTAATCGCTGATGTCCTCCT and 3'-GATACCACTGTCATCCACCTTCCGGCCCACTTCTGGAA-CAATGTCGAC and inserted into the secretory phospholipase \(\alpha \) family (17). The resulting 1.2-kb DNA was digested with NotI and EcoRV and subsequently digested with PacI and NheI and inserted into the corresponding sites of pFBD (pFBD12) (for type 1 Rep52 gene amplified using primers 5'-gattacTCTCAGTTCCGCGCCCGCTGAC and 3'-GATACCACTGTCATCCACCTTCCGGCCCACTTCTGGAA-CAATGTCGAC and inserted into the secretory phospholipase \(\alpha \) family (17). The resulting 1.2-kb DNA was digested with NotI and EcoRV and subsequently digested with PacI and NheI and inserted into the corresponding sites of pFBD (pFBD12) (for type 1 Rep52 gene amplified using primers 5'-gattacTCTCAGTTCCGCGCCCGCTGAC and 3'-GATACCACTGTCATCCACCTTCCGGCCCACTTCTGGAA-CAATGTCGAC and inserted into the secretory phospholipase \(\alpha \) family (17). The resulting 1.2-kb DNA was digested with NotI and EcoRV and subsequently digested with PacI and NheI and inserted into the corresponding sites of pFBD (pFBD12) (for type 1 Rep52 gene amplified using primers 5'-gattacTCTCAGTTCCGCGCCCGCTGAC and 3'-GATACCACTGTCATCCACCTTCCGGCCCACTTCTGGAA-CAATGTCGAC and inserted into the secretory phospholipase \(\alpha \) family (17).

Cell culture. HEK293 cells were maintained in Dulbecco’s modified Eagle’s medium–F–12 (1:1, vol/vol; Invitrogen) supplemented with 10% fetal calf serum (Sigma-Aldrich, St. Louis, MO). Spodoptera frugiperda s9 cells (Invitrogen) were grown at 27°C in shake flask cultures containing SF-900 II SFM (Invitrogen) supplemented with 10% fetal calf serum.

** Western blotting and silver staining.** Cells were lysed in 1% sodium dodecyl sulfate sample buffer and resolved on a 4 to 12% NuPAGE Bis-Tris gel (Invitrogen) and subsequently subjected to the second round of PCR using primers #31 and #32. Chimeric VP253, 254, 255, and 256 were produced in the same way except for primers for the first round of PCR. For VP253, primers #32 and #36 were used to amplify the type 2 VP1 portion and #31 and #35 to amplify the type 5 VP 5 portion (see Fig. 3A). A PCR-generated chimeric VP1 gene was designed with HindIII and BamHI and inserted into the HindIII-BamHI sites of pDBSLSR12 (pFBDPSL12). The resulting recombinant baculoviruses expressing type 5 Rep78 and type 1, 2, 3, or 4 Rep52 were designated Rep51, 52, 53, 54, and 55, respectively. The type 5 VP ORF was obtained by PCR amplification from pAAV5-2 by using primers 5'-gctgatGCTGTCGACTTACTGTTCTTTAT and 3'-GATCGTCGACTTTACTGTTCTTTAT and subsequently with XbaI to excise the VP ORF, which was then inserted into the HindIII-BamHI sites of pDBSLSR12. The PCR amplified VP ORF was cloned into pCMV by using primers 5'-gattacTCTCAGTTCCGCGCCCGCTGAC and 3'-GATACCACTGTCATCCACCTTCCGGCCCACTTCTGGAA-CAATGTCGAC and inserted into the secretory phospholipase \(\alpha \) family (17).

Acknowledgments. This work was supported by Grant 42056 from the National Institutes of Health (to L. G. Flanders).
were then incubated with a secondary anti-mouse or anti-rabbit immunoglobulin G labeled with horseradish peroxidase at a dilution of 1:7,500 (Pierce, Milwaukee, WI). Membranes were incubated in Tris-buffered saline with Tween 20 (TBS-T) (10 mM Tris-HCl [pH 7.6], 0.15 M NaCl, 0.05% Tween 20, 5% nonfat dry milk). Antibodies were added to TBS-T for 1 h. After incubation, membranes were washed three times for 10 min each in TBS-T. All steps were performed at ambient temperature. The development of chemiluminescence catalyzed by horseradish peroxidase was performed according to the manufacturer's instructions (SuperSignal West Pico chemiluminescent substrate; Pierce), and the signals were detected with an X-ray film. Silver staining was performed using a SilverQuest silver staining kit (Invitrogen) according to the manufacturer’s instructions.

Analysis of replicated rAAV DNA in Sf9 cells. Sf9 cells (2 x 10⁵ cells per well) in 12-well plates were infected with GFP with or without Rep baculoviruses at a multiplicity of infection (MOI) of 3 and incubated at 27°C for 3 days. After incubation, extrachromosomal DNA was isolated by the method of Hirt (12) and a volume corresponding to 2 x 10⁴ cells was resolved on a 0.8% agarose gel in Tris-borate buffer. Ethidium-stained gel was visualized under UV.

Production of rAAV5 in HEK293 cells. To produce rAAV5-GFP in mammalian cells, HEK293 cells at 80% confluence (approximately 10⁵ cells per cm²) in a 225-cm² flask were cotransfected with 27 μg of an AAV vector plasmid and 53 μg pSR485 by the calcium phosphate coprecipitation method. pSR485 harbors type 5 rep and cap genes and adenovirus E2A, E4orf6, and VA genes (27). Two days after transfection, rAAV5 was purified as described below. For production of pseudotyped type 5 rAAV-SEAP, HEK293 cells were cotransfected with pAAV-SEAP; a Rep plasmid expressing type 2 Rep78, Rep68, Rep52, and Rep40; a VP plasmid expressing VP254; and an adenovirus helper plasmid. **Production and purification of rAAV5 in Sf9 cells.** Typically, 4 x 10⁶ Sf9 cells (2 x 10⁵ cells per ml) were infected with a Rep baculovirus (RepBac), a VP baculovirus (VPBac), and a GFP baculovirus (GFPBac) with an MOI of 1 per baculovirus construct. To generate pseudotyped 2/5 rAAV-SEAP, Sf9 cells were infected with a RepBac expressing type 2 Rep78 and Rep52, VP254Bac, and SEAPBac. Pseudotype virus refers to the ITRs of one serotype packaged into a capsid derived from a different AAV serotype. For example, rAAV2/5 consists of AAV2 ITRs packaged into an AAV5 capsid. Three days after infection, the cells were pelleted by centrifugation and lysed in a lysis buffer of 20 mM Tris-HCl (pH 8.4), 50 mM NaCl, 2 mM MgCl₂, 0.4% deoxycholic acid, 0.5% 3-[[(cholamidopropyl)-dimethylammonio]-l-propanesulfonate (CHAPS) (Merck, Darmstadt, Germany), and 60 U per ml of Benzonase (Mercer) and incubated at 37°C for 30 min. The concentration of NaCl in the cell lysate was adjusted to 150 mM and incubated for an additional 30 min. Solid CsCl was added to obtain a final density of 1.36 g/cm³. After centrifugation at 36,000 rpm for 24 h at 21°C using an SW40 Ti rotor (Beckman, Fullerton, CA), fractions containing rAAV5 were recovered and subjected to a second round of CsCl ultracentrifugation. For some experi-

FIG. 1. Flow chart of plasmid construction. See Materials and Methods for details. Plasmids on gray backgrounds were used for generation of recombinant baculovirus vectors. Black boxes, type 5 ITR sequence; p10, p10 promoter; polh, polyhedrin promoter; pA, simian virus 40 polyadenylation sequence.
TABLE 1. Oligonucleotides used for construction of chimeric VP genes

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>#30</td>
<td>5-gtaaagtcttggtaaAcGCTGCGACGGTTATCTcCCGA</td>
</tr>
<tr>
<td></td>
<td>TTTGGTTCGAGAGACTGCGT-3'</td>
</tr>
<tr>
<td>#31</td>
<td>5'-gttCggGATcctGGTGTCGTCGTCgtcCTGGGTG-3'</td>
</tr>
<tr>
<td>#32</td>
<td>5'-gtaaagtcttggtaaAcGCTGCGACGGTTATCTcCCGA</td>
</tr>
<tr>
<td></td>
<td>TTTGGTTCGAGAGACTGCGT-3'</td>
</tr>
<tr>
<td>#33</td>
<td>5'-ACACGCGGGGCTTTTGCTGCTGCGTTAATACTA-3'</td>
</tr>
<tr>
<td>#34</td>
<td>5'-TATGTTAATACCGAAGCAGACACACCTGTGGT-3'</td>
</tr>
<tr>
<td>#35</td>
<td>5'-GACTCAGAAGGAGGACTCTTGCAAGCCGGCGA-3'</td>
</tr>
<tr>
<td>#36</td>
<td>5'-TCTGCGCGCTTACCGACCGAGCGTGCCTG-3'</td>
</tr>
<tr>
<td>#37</td>
<td>5'-AAGACAACTGCTTACCTGAGTGTTGACTCTC-3'</td>
</tr>
<tr>
<td>#38</td>
<td>5'-TCCCGGTGTTGTACCTGAGTGTTGCTGCT-3'</td>
</tr>
<tr>
<td>#39</td>
<td>5'-GACGACTTCTCAGCCGAAAGCGGTTCCTC-3'</td>
</tr>
<tr>
<td>#40</td>
<td>5'-TCTGAGACGACGTCTGCCTCTCCTCGCTGCG-3'</td>
</tr>
<tr>
<td>#41</td>
<td>5'-AGGAACCTTGAAGACGCGCCCTACCGAAAGGC-3'</td>
</tr>
<tr>
<td>#42</td>
<td>5'-GGCTTTTCCGTAGGGCGCTTAAACAGTTTCCT-3'</td>
</tr>
</tbody>
</table>

* The HindIII or BamHI sites are underlined. The initiation codon for the VP1 gene was mutated to ACG. The possible splicing donor site was destroyed by introducing silent mutations. The VP ORFs are capitalized, and mutated nucleotides are indicated by lowercase letters.

ment of rAAV5 was further purified by anion-exchange column chromatography. CsCl-banded rAAV5 fractions were dialyzed against a buffer of 20 mM Tris-HCl (pH 8.4), 20 mM NaCl, 2 mM MgCl₂, and 4% glycerol and loaded onto a Hitrap Q Sepharose XL column (1-ml bed volume; Amersham Biosciences, Piscataway, NJ). Bound rAAV5 was eluted with a 20 to 500 mM linear NaCl gradient.

Production of rAAV5 in insect cells

rAAV5 was produced in insect cells using three baculovirus vectors providing the following: (i) genes for three AAV structural proteins that form the virus capsid (VP1, VP2, and VP3), (ii) two of the AAV nonstructural proteins for replication and encapsidation (Rep78 and Rep52), and (iii) AAV vector DNA consisting of the gene of interest flanked by the AAV origins of replication (ITRs). In the presence of the AAV nonstructural proteins, the AAV vector DNA is “rescued” from the baculovirus genome and replicates as AAV via the ITRs (31).

Similarly to AAV type 2, the type 5 capsid proteins VP1, VP2, and VP3 are synthesized from two spliced mRNAs arising from the p41 promoter (Fig. 2A) (25). One mRNA is translated into VP1, while another transcript encodes VP2 and VP3. The initiation codon for VP2 is ACG, which is poorly utilized, resulting in the ribosome scanning through to the VP3 initiation codon AUG. The alternate usage of two acceptor sites and the poor utilization of the ACG initiation codon for VP2 are responsible for the 1:1:10 stoichiometry of VP1, VP2, and VP3. As shown in our previous report, the type 2 VP gene with an AAV intron does not express all of the VP polypeptides in insect cells (31). Mutating the VP1 AUG initiation codon to ACG resulted in production of VP1, VP2, and VP3 with a stoichiometry of approximately 1:1:10 from a single transcript without alternate splicing (31). Based on our initial success with AAV2, we constructed a similar type 5 VP baculovirus (VP5Bac) that harbored a type 5 VP gene where the initiation codon for VP1 was changed to ACG (Fig. 2B). Although this VP5Bac was able to produce type 5 capsids in which type 5 AAV vector DNA was incorporated, VP1 was poorly expressed compared to that synthesized in 293 cells (Fig. 2C). The resulting rAAV5-GFP particles poorly transduced COS cells. The calculated ratio of vector genomes to transducing units for the 293 cell-produced rAAV5-GFP was 10 times higher than the ratio for the 293 cell-produced counterpart. The VP1 polypeptides have phospholipase A₂ activity and are critical for efficient transfer of the viral genome from late endosomes to the nucleus (36). The efficiency with which a scanning eukaryotic ribosome recognizes an AUG codon for translational initiation is dependent on the local sequence context of the codon. The sequence ACCAUUG is optimal for initiation (18). Residue G at +4 seems particularly important for translation from a non-AUG codon where the A of the ACG codon for type 5 VP1 in insect cells, we tested a series of chimeric capsids between types 2 and 5 in which a part of the type 5 VP1-unique portion was replaced by the corresponding portion of type 2 (2). Since we successfully produced rAAV2 that was as infectious as the 293 cell-produced one, we tested some VP1 mutants that introduced a G residue at +4. However, these mutants also failed to produce infectious type 5 AAV particles (data not shown). The VP1-unique portion is conserved well among different serotypes compared to the VP3 portion that constitutes the majority of the viral capsids and is responsible for receptor binding specificity. The type 5 VP1-unique portion is approximately 70% identical to the equivalent portion of type 2 (Fig. 3A), while the type 5 VP3 portion is 60% homologous to the equivalent portion of type 2 (2). Since we successfully produced rAAV2 that was as infectious as the 293 cell-produced one, we tested a series of chimeric capsids between types 2 and 5 in which a part of the type 5 VP1-unique portion was replaced by the corresponding portion of type 2 VP1. Figure 3A shows the chimeric VP1 genes constructed. Figure 3B shows the Western analysis of type 5 VP poly-

Downloaded from http://jvi.asm.org/ on October 23, 2017 by guest
peptides produced with VP251Bac through VP256Bac. Each VPBac produced chimeric VP1 at levels comparable to those of VP2. Formation of empty capsids was confirmed by CsCl density gradient analysis of Sf9 cell lysate infected with VP254Bac, as shown in Fig. 3C. The peak of VP polypeptides came to the fraction of 1.31 g/cm³, a buoyant density of empty capsids. The GFP gene between the type 5 ITRs could be packaged into each type of chimeric capsid, and all of the chimeric rAAV5-GFPs except VP251 could transduce COS cells with efficiency similar to that of 293 cell-produced rAAV5-GFP (data not shown). The yields of rAAV5-GFP produced with VP253Bac or VP254Bac were approximately 1.2 times higher than others, although the difference was not statistically significant. We thus used VP254Bac to produce rAAV5 for the next experiments.

The initial Rep baculovirus for type 2 rAAV production drove type 2 Rep72 expression with a truncated promoter for the immediate-early 1 gene of Orgyia pseudotsugata nuclear polyhedrosis virus (ΔIE) and type 2 Rep52 under the control of the polyhedrin promoter (31) (Fig. 2B). The AAV5 genome encodes nonstructural proteins Rep78 and Rep52 (Fig. 2A). Similarly, we constructed a Rep baculovirus that expressed type 5 Rep78 and Rep52 under the control of the ΔIE promoter and the polyhedrin promoter, respectively. The titers of the type 2 or type 5 Rep baculoviruses, however, were lower than those of other recombinant baculovirus vectors (e.g., VPBac, GFPBac). The immediate-early 1 gene promoter becomes active at the early stage of baculovirus infection, and we thought that early expression of Rep78 in insect cells might negatively affect the yields of recombinant baculoviruses. The very late p10 promoter, which is widely used for recombinant protein production, is active at the latest stage of baculovirus infection. Thus, to delay and suppress the expression of Rep78, we tested a series of truncated p10 promoters. First, we screened the truncated p10 promoters for production of type 2 rAAV and selected one that generated high-titer rAAV2. Figure 4A shows the map of the p10 promoter and the truncated p10 promoter we constructed. The upstream TAAG sequence does not affect the activity of the p10 promoter (32). The sequence between the TAAG sequence and the p10 protein initiation codon at +72 (where the transcription start site is defined as +1) is called the burst sequence and is required for the “burst” of expression of the p10 protein at the very late stage of baculovirus infection. The vlf-I transactivator interacts with the burst sequence and strongly stimulates the transcription from the p10 promoter (35). To construct a weak p10 promoter (Δp10), we removed the burst sequence between positions +39 and +72 from the original p10 promoter. The Δp10 promoter was best for the production of rAAV2 among a series of truncated p10 promoters we examined. The titers of recombinant baculoviruses with the Δp10 promoter were comparable to those of other recombinant baculoviruses. The Δp10 promoter was transferred to express type 5 Rep78 (Fig. 2B). Figure 4B compares the time courses of type 5 Rep expression by ΔIE and Δp10 promoters over 72 h after infection, indicating that the Δp10 promoter-driven Rep78 expression was detected at 24 h after infection while the ΔIE promoter expressed Rep78 as early as 12 h after infection. To examine whether this modest difference in the levels of Rep78 affected replication of the AAV vector DNA, we isolated the low-molecular-weight DNA from the Sf9 cells infected with hGFP baculovirus and a Rep baculovirus (Fig. 4C). A ladder of replicative forms (RF) of rAAV5 DNA began to appear at 36 h postinfection in either case. The expected size of rAAV5-hGFP or monomer RF is 2.4 kb and the sizes of dimer and trimer RF are 4.8 and 7.2 kb, which is consistent with the result of the agarose gel electrophoresis.
Heteroserotypic small Rep can package rAAV5 DNA into type 5 capsids. The insect cell-based production system for rAAV2 or rAAV1 can generate more than 4 x 10^4 particles of rAAV per Sf9 cell. However, the yields of rAAV5 produced with either ΔIE or Δp10 RepBac were approximately 1 x 10^4 to 2 x 10^4 vg per Sf9 cell. Rep52, or small Rep protein, has been implicated in encapsidation of the AAV genome. To establish a high-titer production system, we investigated the use of other serotypes of Rep52 for rAAV5 production. We replaced the type 5 Rep52 with serotype 1, 2, 3, or 4 Rep52 on the Δp10 RepBac. Figure 5A shows the results of Western blotting of Sf9 cells infected with Rep baculoviruses expressing type 5 Rep78 under the control of the Δp10 promoter and serotype 1, 2, 3, 4, or 5 Rep52 driven by the polyhedrin promoter. To generate rAAV5, Sf9 cells were coinfected with hGFPBac, VP254Bac, and a RepBac with the indicated serotype Rep52 at an MOI of 1. Sf9 cells infected with hGFPBac and VP254Bac along with RepBac producing type 1 Rep52 were processed by CsCl density centrifugation, and fractions were analyzed for capsid antigen by Western blotting (Fig. 5B). Two peaks of VP proteins were detected; the higher-buoyant-density peak, from 1.42 to 1.36 g/cm^3, presumably consists of a vector genome containing rAAV5 particles. Another peak, at 1.33 g/cm^3, represents empty capsids, indicating that type 1 Rep52 packaged serotype 5 rAAV DNA into type 5 capsids. When a RepBac that expressed only type 5 Rep78 was used, no rAAV5 particles were produced, confirming that heteroserotypic small Rep indeed packaged type 5 rAAV DNA into type 5 capsids.
produced with type 1, 2, 3, or 4 small Rep was 56,000 ± 3,200 (n = 4), 41,000 ± 18,900 (n = 4), 42,000 ± 7,300 (n = 3), or 39,000 ± 3,500 (n = 3) particles per Sf9 cell, respectively, while that of rAAV5-GFP produced using AAV5 Rep52 was 13,900 ± 3,200 (n = 5). The rAAV5-hGFP particles produced with the indicated serotype Rep52 were further purified by anion-exchange column chromatography, and a total of 3 × 10^9 vg of either rAAV5-hGFP were then fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and examined by silver staining along with 293 cell-produced rAAV5-hGFP (Fig. 5E). Densitometric analysis indicated that the intensities of the VP3 bands were almost equal to one another.

Type 5 vector DNA was packaged into type 5 capsids consisting of chimeric VP1 between types 2 and 5 in the baculovirus system. To examine the possible effect of the chimeric VP1 on packaging of type 5 vector DNA with heteroserotypic Rep52, we tested the production of rAAV5-hGFP by using either Rep5/1Bac or Rep5/5Bac and VP5Bac or VP25Bac. Interestingly, the yields of rAAV5 produced with type 5 Rep52 and type 2/5 chimeric capsids were constantly lower than yields produced with other combinations (Fig. 5F). Type 1 Rep52 was capable of packaging type 5 vector DNA into type 5 capsids and type 2/5 chimeric capsids with similar levels of efficiency. Although the result was not conclusive, the presence of a type 2 VP1-unique portion might interfere with type 5 Rep52 packaging rAAV5 DNA into type 5 capsids in insect cells.

Insect cell-produced rAAV5 infects cells via an α2-3 sialic acid receptor. AAV2 capsids utilize HSPG as a primary coreceptor to infect target cells (30), whereas AAV5 capsids require α2-3 sialic acid for efficient uptake (14). rAAV5 capsids generated in Sf9 cells are composed of VP1 partially replaced with type 2 VP1. The domains involved in receptor binding are within the VP3 portion (16), and the type 2 VP1-unique portion does not appear to be involved in attachment to target cells (19). To determine whether rAAV5 chimeric capsid particles infect cells via sialic acid and not via HSPG, we performed competition experiments with receptor analogs. The results of the heparin competition study show that rAAV2-GFP failed to transduce COS cells in the presence of heparin, an analog of heparan sulfate, as expected (Fig. 6A, top panels). By contrast, rAAV5-GFP produced in 293 cells (Fig. 6A, middle panels) or insect cells (Fig. 6A, bottom panels) was able to express GFP in COS cells irrespective of the presence of heparin, suggesting that Sf9 cell-produced rAAV5-GFP did not utilize HSPG as a primary coreceptor. The number of GFP-expressing cells was counted by flow cytometry, and the percent change in transduction compared to transduction in the absence of heparin was calculated, which clearly corroborated the observation with fluorescent microscopy. We next examined whether insect cell-produced rAAV5-GFP infects cells via α2-3 sialic acid. As shown in Fig. 6B, COS cells were infected with rAAV5 generated in 293 cells (middle panels) or Sf9 cells (bottom panels) in the presence or absence of an analog of α2-3 sialic acid, 3'-SLN. The analog inhibited GFP expression in COS cells by both 293 cell- and Sf9 cell-produced rAAV5-GFP, suggesting that rAAV5-GFP produced in insect cells infected cells via α2-3 sialic acid as did 293 cell-produced rAAV5. To confirm that rAAV5-GFP derived from insect cells utilized sialic acid as a cell attachment receptor, we infected cells denuded of sialic acid by neuraminidase treatment. The

FIG. 4. (A) Map of the Δp10 promoter used for Rep78 expression. The sequence between positions +39 and +72 is deleted in the Δp10 promoter, where the T of the TAAG sequence or the transcription start site (marked with a bent arrow) is defined as +1 and the A of the p10 protein AUG codon is defined as +72. The original AUG codon for the p10 protein was mutated to ACT with pFastBac Dual (Invitrogen). The positions of the TATA box and the TAAG sequence are indicated. (B) Time course of Rep78 expression by ΔIE or Δp10 promoter. Sf9 cells were infected with a Rep baculovirus, and the cells were harvested at the times indicated (in hours) for Western analysis with a monoclonal anti-Rep antibody. (C) Replication of hGFP vector DNA in insect cells. Sf9 cells were coinfected with a Rep baculovirus and an hGFP baculovirus at 1 PFU per cell and incubated for the times indicated (in hours). Low-molecular-weight DNA was isolated, and DNA equivalent to 10^5 cells was resolved onto a 1% agarose gel. T, trimer replicative form; D, dimer; M, monomer.
result shows that prior incubation with neuraminidase significantly inhibited the transduction of COS cells mediated by rAAV5-GFP produced in 293 cells and Sf9 cells (Fig. 6C).

Comparison of transduction efficiencies with rAAV5 in cultured cells. We next compared the efficacy of rAAV5-GFP/Neo produced in Sf9 cells to that for a mammalian-cell-produced counterpart. COS cells were infected with either Sf9-produced or 293-produced rAAV5-GFP/Neo at 1/1000 to 1/1000000 vg per cell for 1 day, and the number of GFP-positive cells was counted by flow cytometry. As shown in Fig. 7A, both Sf9-produced and 293-produced rAAV5-GFP/Neo showed similar dose-response curves. In addition, the vector genome-to-transducing unit ratio was calculated based on the number of GFP-positive cells at 3/1000000 vg per cells. Three independently produced samples were examined, and the vector genome-to-transducing unit ratio for Sf9-produced rAAV5-GFP was 3.9 x 10^4 ± 1.6 x 10^4 (mean ± standard deviation), while the ratio for 293-produced rAAV5 was 3.6 x 10^4 ± 1.2 x 10^4. These results indicated that insect cell-generated rAAV5-GFP/Neo had a similar ability to transduce COS cells. Although the capsids produced in Sf9 cells contain type 2/5 chimeric VP1 and those produced in HEK293 cells were composed of original type 5 VP1, rAAV5-GFP/Neo derived from Sf9 cells and that derived from HEK293 cells did not show any significant difference in GFP expression in COS cells, suggesting that the difference in the VP1-unique portion did not impact the expression of the transgene or affect the intracellular processing of type 5 capsids in COS cells. We also compared transduction efficiencies of rAAV5-hGFP generated in Sf9 cells and rAAV5-hGFP generated in HEK293 cells. Surprisingly, the dose-response curve obtained by Sf9-produced rAAV5-hGFP shifted to the right and the number of GFP-positive cells at the dose of 3 x 10^3 vg per cell was five times larger than that for 293-produced rAAV5-hGFP (Fig. 7B). Since the substitution of the type 5 VP1-unique portion with the equivalent portion of type 2 did not impact the GFP expression in COS cells (Fig. 7A), we explored the rAAV genomes packaged into vector capsids. Virion DNA was isolated and analyzed on an alkaline gel. After electrophoresis, the DNA was transferred to a nylon membrane and hybridized with a 32P-labeled CMV-specific probe. The GFP/Neo DNA packaged into AAV5 capsids is essentially the same in size and amount as expected (Fig. 7C). We next analyzed virion DNA isolated from rAAV5-hGFP produced with the indicated serotype Rep52 in insect cells, as well as 293-produced rAAV5-hGFP (Fig. 7D). The encapsidated hGFP DNA is present as
two DNA species. The higher-mobility virion DNA corresponds with 2.4-kb hGFP vector DNA or a single-stranded monomer, which is confirmed by comigration with a 2.4-kb vector DNA obtained by treatment with a restriction enzyme of the hGFP vector plasmid, pSR485hGFP. The lower-mobility DNA is the same in size as the monomer RF or duplex form of hGFP DNA (Fig. 7D) isolated from Sf9 cells coinfected with RepBac and hGFPBac (Fig. 4C). The intensity of the larger virion DNA, which was quantified with an imaging analyzer, was roughly double that of shorter DNA for each rAAV5 produced in Sf9 cells. If the larger virion DNA is a monomer duplex form and thus has two CMV promoter sequences hybridizing to a CMV probe, then we estimated that the quantity of the double-stranded monomeric form was equal to that of the single-stranded monomer. The ratio of the amount of the monomer duplex form to the amount of the single-stranded monomer form in the rAAV5-hGFP virion produced in 293 cells is 1 to 3.5. AAV particles have been shown to package two copies of vector genomes that are less than 50% of the 4.8-kb AAV genome, and the packaged vector DNA appeared to be monomeric single-stranded and double-stranded RF (6). For gene expression, the single-stranded vector genome has to be converted to a double-stranded form by either second-strand synthesis (8, 9) or annealing of complementary strands (23). The monomeric duplex vector DNA, on the other hand, can function directly as a template for mRNA synthesis. Thus, the more potent gene expression mediated by rAAV5-hGFP generated in Sf9 cells is probably due to the presence of the encapsidated monomer duplex form.

Comparison of efficacies of rAAV5 in vivo. To compare the efficacies of rAAV5 produced in 293 cells and rAAV5 produced in Sf9 cells, we constructed a type 5 vector that expressed human SEAP. rAAV5 particles produced in Sf9 cells consisted of chimeric VP1 between type 2 and type 5. To eliminate the possible difference in intracellular processing of rAAV5 particles due to replacement of the type 5 VP1-unique portion with the equivalent one of type 2, we compared the in vivo activities of rAAV5 particles containing type 2/5 VP1 polypeptides produced in insect and mammalian cells. Five mice each intramuscularly received a total of 10^11 vg of rAAV5-SEAP generated in either 293 cells or Sf9 cells, and serum SEAP levels were monitored. As shown in Fig. 8A, the expression profile of the Sf9-produced type 5 SEAP vector differed from that of the 293-produced one. The rAAV5-SEAP
generated in HEK293 cells showed a gradual increase in serum SEAP activity over 1 month after injection, which is a typical expression pattern by rAAV-mediated transduction. The Sf9-produced rAAV5-SEAP induced levels of SEAP activity at 1 or 2 weeks after injection that were more than 30 or 10 times higher, respectively, than those of the 293-produced rAAV5-SEAP, and the serum SEAP activity by Sf9 produced rAAV5-SEAP decreased at 4 weeks after injection. There was no significant difference between the two groups after 4 weeks following administration. We also analyzed the SEAP vector DNA on an alkaline gel (Fig. 8B). The expected size of rAAV5-SEAP vector genomes is 3.4 kb. The majority of 293-produced rAAV5-SEAP DNA is single-stranded monomer in both type 5 capsids and type 2/5 chimeric capsids. In addition to the 3.4-kb single-stranded vector genome, DNA extracted from Sf9 cell-produced rAAV5 particles contained an additional DNA of approximately 4.7 kb. One model for AAV packaging proposes that when the size of vector DNA is larger than the size of the wild-type AAV, 4.7 kb, the vector DNA is cleaved to 100% of the AAV genome during packaging into virion (6). The 4.7-kb virion DNA may be a cleaved product of duplex multimers synthesized in Sf9 cells.

DISCUSSION

Recent advances in understanding of biology of AAV and in production of rAAV have facilitated the use of rAAV as a gene transfer vector. A human clinical trial with rAAV2 expressing a coagulation factor IX has shown that intramuscular delivery of more than 10^{15} rAAV2 particles would be required for amelioration of hemophilia B (15). Currently, the widely employed method for production of rAAV is transfection of packaging cells, such as HEK293 cells, with plasmids carrying AAV and adenovirus genes. Plasmid transfection is more easily adaptable to packaging different serotype AAV vectors than establishing a packaging cell line. However, the transfection process is the limiting step in rAAV production, which requires adherent HEK293 cells on a two-dimensional surface for efficient production of rAAV.

The production of other AAV serotype-derived vectors has been described previously (26) and follows the strategy developed for rAAV2 (20). Some modifications have been reported, such as lipofection of 293 cells in suspension culture in serum-free media, which makes the handling of the cells and the purification step easier (28). However, the use of a lipid reagent for transfection may be neither cost-effective nor scalable. A recombinant herpes simplex virus harboring type 5 rep and cap genes was created to eliminate the transfection process (33), although the yields of rAAV5 were low. The baculovirus/insect cell-based rAAV5 production system presented here does not require plasmid transfection and is scalable. By extrapolation from culture volume, we expect to obtain more than 10^{14} particles of rAAV5-GFP from a 1-liter culture. This is consistent with yields of rAAV1 or rAAV2 produced in Sf9 cell cultures (20a, 31).

To produce infectious rAAV5 particles in insect cells, we
inserted an N-terminal portion of type 2 VP1 into the corresponding site of type 5 VP1. The N termini of VP1 polypeptides contain the phospholipase A2 motif and are essential to viral infectivity (36). Electron microscopy indicated that the VP1-unique portion is hidden within type 2 capsids and appears on the surface of the capsids during the infectious pathway in cells (19). The VP1-unique portion is well conserved among different AAVs. Comparison of the portion among serotypes 1 through 4 and 6 revealed that one serotype is more than 80% identical to another. The type 5 VP1-unique portion is 70 to 75% identical to that of other serotypes, while the sequence alignment of VP2 or VP3 of AAV1 through AAV6 showed that type 5 is approximately 55% identical to other serotypes. The initial trial mutation of the start codon for type 5 VP1 failed to produce infectious rAAV5 particles due to low synthesis of VP1 polypeptide (Fig. 2C). How- ever, the successful generation of rAAV2 particles in insect cells, inhibited type 5 Rep52-mediated introduction of type 5 ITR genomes into type 5 capsids may only indicate the role of the type 2 VP1-unique portion as a physical barrier during packaging of rAAV genomes into capsids. We believe that under a special circumstance, such as in invertebrate cells, heteroserotypic Rep52 is superior to type 5 Rep52 in packaging rAAV DNA with type 5 ITR into type 5 capsids. Type 2 small Rep protein associates with Rep52 for production of type 5 rAAV. No rAAV5 particles were recovered from the recombinant baculovirus-infected Sf9 cells (data not shown), suggesting that the small Rep protein is absolutely required for generating rAAV5 in insect cells. As shown in Fig. 5F, the fact that the partial replacement of the VP1-unique portion with the corresponding portion of type 2, the strategy we took to generate infectious type 5 particles in insect cells, inhibited type 5 Rep52-mediated introduction of type 5 ITR genomes into type 5 capsids may only indicate the role of the type 2 VP1-unique portion as a physical barrier during packaging of rAAV genomes into capsids. We believe that under a special circumstance, such as in invertebrate cells, heteroserotypic Rep52 is superior to type 5 Rep52 in packaging rAAV DNA with type 5 ITR into type 5 capsids. It is interesting to examine whether other serotypes of Rep52 can package type 5 rAAV DNA into type 5 capsid in mammalian cells. We are currently investigating the packaging of type 5 genome into type 5 capsid with different serotypes of Rep52 in HEK293 cells.

The majority of the vector genome of rAAV5 produced in HEK293 cells in the present study is in single-stranded monomeric form, irrespective of the size of the vector genome (Fig. 7C and D and 8B). However, when the size of vector DNA is shorter than the size of the wild-type AAV genome, insect cells tend to package longer, 4.7-kb DNA into type 5 capsids. The 4.7-kb longer virion DNA in Sf9-produced rAAV5 appears to be a cleavage product of multimers of replicated vector genomes. If the size of a multimer is within the packaging limit,
it is efficiently introduced into AAV capsids. If a multimer is larger than 4.8 kb in size, a partially truncated multimer is packaged into AAV capsids in insect cells (6). Sequencing of 4.7-kb DNA packaged into virions will be a key to disclosing the difference between packaging of vector DNA into capsids in HEK293 cells and insect cells. The difference in packaged virion DNA between rAAV5 produced in human cells and in insect cells provides important information on designing vector DNA for production of rAAV5 in insect cells.

In summary, we developed a new method for production of rAAV5 in insect cells, which offers a better alternative to the existing production methods of rAAV5, although the vector genomes packaged into capsids differ in size from rAAV5 produced in HEK293 cells. The robust generation in suspension culture will facilitate the use of type 5 rAAV not only for basic studies but also for clinical studies.

ACKNOWLEDGMENTS

This work was supported in part by grants from the Ministry of Health, Welfare, and Labor of Japan and Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Technology of Japan, and High-Tech Research Center Project for private universities (matching-fund subsidy from the Ministry of Education, Science, Sports, and Technology of Japan). This research was also supported in part by the Intramural Research Program of the NHLBI, NIH.

REFERENCES

Downloaded from http://jvi.asm.org/ on October 23, 2017 by guest