Kaposi’s Sarcoma-Associated Herpesvirus Modulates Microtubule Dynamics via RhoA-GTP-Diaphanous 2 Signaling and Utilizes the Dynein Motors To Deliver Its DNA to the Nucleus

Pramod P. Naranatt, Harinivas H. Krishnan, Marilyn S. Smith, and Bala Chandran*

Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, Kansas

Received 6 February 2004/Accepted 3 September 2004

Human herpesvirus 8 (HHV-8; also called Kaposi’s sarcoma-associated herpesvirus), which is implicated in the pathogenesis of Kaposi’s sarcoma (KS) and lymphoproliferative disorders, infects a variety of target cells both in vivo and in vitro. HHV-8 binds to several in vitro target cells via cell surface heparan sulfate and utilizes the α3β1 integrin as one of its entry receptors. Interactions with cell surface molecules induce the activation of host cell signaling cascades and cytoskeletal changes (P. P. Naranatt, S. M. Akula, C. A. Zien, H. H. Krishnan, and B. Chandran, J. Virol. 77:1524–1539, 2003). However, the mechanism by which the HHV-8-induced signaling pathway facilitates the complex events associated with the internalization and nuclear trafficking of internalized viral DNA is as yet undefined. Here we examined the role of HHV-8-induced cytoskeletal dynamics in the infectious process and their interlinkage with signaling pathways. The depolymerization of microtubules did not affect HHV-8 binding and internalization, but it inhibited the nuclear delivery of viral DNA and infection. In contrast, the depolymerization of actin microfilaments did not have any effect on virus binding, entry, nuclear delivery, or infection. Early during infection, HHV-8 induced the acetylation of microtubules and the activation of the RhoA and Rac1 GTPases. The inactivation of Rho GTPases by Clostridium difficile toxin B significantly reduced microtubular acetylation and the delivery of viral DNA to the nucleus. In contrast, the activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor significantly augmented the nuclear delivery of viral DNA. Among the Rho GTPase-induced downstream effectors molecules known to stabilize the microtubules, the activation of RhoA-GTP-dependent diaphanous 2 was observed, with no significant activation in the Rac- and Cdc42-dependent PAK1/2 and stathmin molecules. The nuclear delivery of viral DNA increased in cells expressing a constitutively active RhoA mutant and decreased in cells expressing a dominant-negative mutant of RhoA. HHV-8 capsids colocalized with the microtubules, as observed by confocal microscopic examination, and the colocalization was abolished by the destabilization of microtubules with nocodazole and by the phosphatidylinositol 3-kinase inhibitor affecting the Rho GTPases. These results suggest that HHV-8 induces Rho GTPases, and in doing so, modulates microtubules and promotes the trafficking of viral capsids and the establishment of infection. This is the first demonstration of virus-induced host cell signaling pathways in the modulation of microtubule dynamics and in the trafficking of viral DNA to the infected cell nucleus. These results further support our hypothesis that HHV-8 manipulates the host cell signaling pathway to create an appropriate intracellular environment that is conducive to the establishment of a successful infection.

The gamma-2 human herpesvirus 8 (HHV-8), or Kaposi’s sarcoma-associated herpes virus (KSHV), genome was first identified in biopsies of KS, an AIDS-defining neoplasm of human immunodeficiency virus (HIV)-infected patients (16). Several lines of evidence point to a central role of HHV-8 in the pathogenesis of KS and of two B-cell proliferative disorders, primary effusion lymphoma (or body-cavity-based B-cell lymphomas [BCBL]) and multicentric Castleman’s disease (58). HHV-8 DNA and transcripts have been identified in vivo in KS spindle and endothelial cells, keratinocytes, prostate epithelial cells, B cells, and macrophages (9, 58). In vitro, HHV-8 has been shown to infect many types of human cells, such as B, epithelial, endothelial, and foreskin fibroblast (HFF) cells and keratinocytes (11, 57, 66). HHV-8 can also infect animal cells, such as mouse embryonic fibroblasts (11, 50), owl monkey kidney cells, CV-1 cells, and baby hamster kidney (BHK-21) cells (11, 57). HHV-8 enters human fibroblast, B (BJAB), and embryonic kidney (293) cells by endocytosis (3, 6, 36), and this uptake is severely attenuated in cells pretreated with inhibitors affecting endosomal functions (6, 36). HHV-8 utilizes the ubiquitous cell surface heparan sulfate (HS) to bind several in vitro target cells (3), and this interaction is mediated by the virion envelope-associated glycoproteins gB and gpK8.1A (4, 67). HHV-8 gB also interacts with the host cell surface α3β1 integrin and utilizes the α3β1 integrin as one of its cellular receptors (5). Using a KSHV ORF50-dependent reporter 293-T cell line, Inoue et al. (36) reported the inability of soluble α3β1 integrin and RGD peptides to block the infectivity of HHV-8. However, in their study the virus was centrifuged with cells in the presence of Polybrene, which may account for the apparent discrepancy. Polybrene is
a positively charged cation which can complex with the virus envelope and bypass the need for receptors. This property of Polybrene is the basis for its use to increase the infectivity of many viruses and to deliver nucleic acids for gene therapy. The nature of the other receptor(s) recognized by HHV-8 and the glycoproteins involved need to be evaluated further.

The precise mechanisms of HHV-8 entry, transport of virus capsids in the cytoplasm, delivery of viral DNA to the nucleus, and initiation of infection have not been fully explored. To establish a successful infection, viruses must cross the plasma membrane and target their genome and accessory proteins to the correct organelle, where gene transcription, nucleic acid replication, and viral maturation can take place. After cell membrane penetration, viruses encounter the formidable barrier of the cytoplasm, which is packed with organelles, solutes, and a complex cytoskeletal network consisting of microtubules (MTs), actin microfilaments (MFs), and intermediate filaments (IFs), all of which restrict the free diffusion of macromolecular complexes larger than 500 kDa or 50 nm (59, 63). Several viruses overcome these barriers by using the host cell macromolecule transport mechanism to move within the cell (14). The movement of large cargo, including membrane organelles, involves either the MF or MT network. Adenoviruses use the microtubules to reach the target cell nucleus, and the disassembly of viral capsids near the nuclear pores allows the viral DNA to enter the nucleus (25, 61, 62, 64, 69). The MT network has also been shown to be utilized by herpes simplex virus type 1 (HSV-1) to transport its capsid (31, 44, 61, 69) and by HIV type 1 (HIV-1) to transport its viral particle with the newly synthesized preintegration complex cDNA (47, 69).

An HHV-8–integrin interaction results in the activation of integrin-associated focal adhesion kinase (FAK) and phosphatidylinositol 3-kinase (PI-3K) (50). Two of the hallmarks of an integrin interaction with ligands are the reorganization and remodeling of the cytoskeleton, which are controlled by the Rho, Rac, and Cdc42 GTPases (13). Immediately after infection, HHV-8 induces the rapid polymerization of actin in the target cells, leading to an increase in the F-actin content, an accumulation of stress fibers, the formation of filopodial extensions, and cellular ruffling (50). These morphological changes are also induced by HHV-8 gB and are inhibited by PI-3K inhibitors (60). These data suggest that HHV-8 modulates the cytoskeletal network dynamics in a PI-3K- and Rho GTPase-dependent manner (50, 60). To investigate the role of HHV-8-induced cytoskeletal dynamics in the infectious process, we analyzed the events promoting the nuclear trafficking of internalized HHV-8. In this report, we demonstrate that MTs are vital for the trafficking of viral DNA to the infected cell nucleus. Antibodies against the HHV-8 capsid showed that the viral capsid colocalizes with the MTs near the vicinity of the nucleus, and the inhibition of MT polymerization and Rho GTPases abolished the migration of capsids in the cytoplasm. Our studies also show that HHV-8 utilizes the MT-dependent dynein motor for the transport of its DNA towards the nucleus. These results demonstrate that HHV-8 manipulates the host cell signaling pathways to promote the trafficking of its capsid and to establish a successful infection.

MATERIALS AND METHODS

Cells and plasmids. Human fibroblast cells (HFF; Clonetics, Walkersville, Md.), human dermal microvascular endothelial cells (CC-2533; Clonetics), human embryonic kidney cells (293), CV-1 cells, HHV-8-carrying human B cells (BCBL-1), recombinant green fluorescent protein–HHV-8 (GFP–HHV-8–γKSHV.150)-carrying BCBL-1 cells (GFP–BCBL-1) (66), and BJAB cells (HHV-8- and Epstein-Barr virus-negative human B cells) were grown per standard procedures established in the laboratory (3–6, 50). A Myc-tagged p50 dynamin construct (30) was a kind gift from Richard Vale, Department of Pathology, Columbia University, New York, N.Y. Transfections of 293 and CV-1 cells with 3 μg of p50 dynamin were performed by the use of Lipofectamine 2000 (Invitrogen, Carlsbad, Calif.) as described previously (49, 50).

Transfection and GFP-encoding gene assay. 293 cells were transfected with the wild type (wt) and with dominant-negative (T19N) and constitutively active (G14V) mutants of RhoA plasmids obtained from the Guthrie cDNA resource center (http://www.cdna.org). Plasmid DNA (2.5 μg) was used for transfections, and G418 selection was performed to establish stable cell lines carrying each mutant. Each cell line carrying either a wt or mutant Rho plasmid was first characterized by a GFP-encoding assay to confirm its phenotype. Lysates of each cell line were then made by using RIPA lysis buffer containing protease inhibitors and were normalized to contain equal protein concentrations before the addition of 5 μl of GFP-S (Upstate Biotechnology, Charlottesville, Va.). The mixture was incubated at 30°C for 15 min with agitation (GFP loading), and the reaction was terminated by the addition of MgCl2 to a concentration of 50 μM. The amounts of actin, Rho (Rho-GTP) or Rho (Rho-GDP) reaction mixture were detected by affinity precipitation (4°C for 45 min) using rhokin-GST beads. Bound RhoA proteins were resolved by sodium dodecyl sulfate–12% polyacrylamide gel electrophoresis (SDS–12% PAGE) and immunoblotted with rabbit polyclonal antibodies against RhoA. These characterized cells were used to examine the role of Rho in HHV-8 nuclear trafficking.

Virus. HHV-8 was purified from BCBL cells according to previously described methods (3, 48, 50), and the purity of the preparation was assessed by guidelines established in our laboratory (3, 48, 50). HHV-8 DNA was extracted from the virus, and the copy numbers were quantified by real-time DNA PCR using primers amplifying the HHV-8 ORF73 gene (43).

Antibodies, toxins, and reagents. Polyclonal rabbit antibodies to Cdc42, Rac1, RhoA, and diaphanous 2 (Dia2) and a monoclonal (MAb) antibody against the c-myctag were obtained from Santa Cruz Biotechnology, Santa Cruz, Calif. A MAb against GFP was obtained from Covance Research Products, Berkeley, Calif. MAbB against β-actin, α-tubulin, and an acetylated form of α-tubulin, tetradecanoyl phorbol acetate, and lysophosphatidic acid (LPA) were obtained from Sigma. Rabbit antibodies against human PAK-1 (total) and phospho-PAK1/2 (Ser 199/204 and Ser 192/197) were obtained from Cell Signaling Technology, Beverly, Mass. Anti-rabbit and anti-mouse antibodies linked to horse- radish peroxidase, fluorescein isothiocyanate, Alexas 488, and Alexas 594 were purchased from KPL Inc., Gaithersburg, Md., or Molecular Probes, Eugene, Ore. The cytoskeletal depolymerizing agents nocodazole, cytochalasin D (cyto D), latrunculin A (lat A), N-deacetyl-N-methylcholchicine (Colcemid), and paciltaxel (Taxol) were purchased from Sigma. Crotalaria hirtaolic diteric toxin B (CtixB) and a MAB against lamin B were obtained from Calbiochem, La Jolla, Calif. Cytotoxic necrotizing factor 1 (CNF-1) from Escherichia coli (2) was a kind gift from Budula Schmidt, Universitat Freiburg, Freiburg, Germany. Rabbit polyclonal antibodies detecting total stathmin and phosphorylated stathmin (Ser 16) were kind gifts from Andre Sobel, INSERM U440, Institut du Fer a Moulin, Paris, France (27).

GFP–HHV-8 infection and HHV-8 binding assay. The effects of inhibitors on HHV-8 infection were measured by using GFP–HHV-8 (rKSHV.152) per previously described procedures (3, 49, 50). [3H]thymidine-labeled HHV-8 was used to assess the effects of various inhibitors on HHV-8 binding according to previously described procedures (3).

Real-time DNA and RT-PCR. Real-time DNA PCR and real-time reverse transcription-PCR (RT-PCR) were performed to quantitate the internalized viral DNA and to monitor HHV-8 ORF73 mRNA expression, respectively (43).

HHV-8 DNA nuclear delivery assay. To monitor the delivery of HHV-8 DNA to HFF cell nuclei, we prepared pure nuclear fractions by use of a Nuclei EZ isolation kit (Sigma) according to the manufacturer's recommendations. Briefly, cells infected with HHV-8 were collected at different times postinfection (p.i.), washed, treated with trypsin-EDTA (0.25% trypsin and 5 mM EDTA) to remove noninternalized virus, and lysed on ice for 5 min with a mild lysis buffer (Sigma), and the nuclei were concentrated by centrifugation at 500 × g for 5 min. Cytoskeletal components loosely bound to the nuclei were removed from the nuclear pellet by a repeat of the lysis and centrifugation procedures. The nuclei were analyzed by use of a T/S 1000 Fluorescence microscopy (20).
from one 25-cm² flask were resuspended in nucleus homogenization buffer (250 mM sucrose, 5 mM MgCl₂, 6.4 mM H₄O, 25 mM KCl, 20 mM Tricine-KOH, 7.8), and 60% iodoxan (Optiprep; Axis-Shield, Oslo, Norway) was added to a final concentration of 25% iodoxan. Four milliliters of this preparation was layered over a gradient of 4 ml of 30% and 4 ml of 35% iodoxan and then centrifuged at 10,000 × g for 20 min in a JA 20 rotor (Beckman). The pure nuclear band at the 30-to-35% interface was removed, and HHV-8 DNA was extracted by the use of DNeasy columns (Qiagen). The purity of the nuclear preparations was assessed by immunoblots using anti-lamin B antibodies, and cytoskeletal contamination was assessed by the use of anti-β-actin and anti-α-tubulin antibodies.

Western blot analysis. Total cell lysates (10 µg) were resolved in SDS-PAGE gels, transferred to nitrocellulose membranes, and immunoblotted with antibodies. Immunoreactive bands were visualized by chemiluminescence reactions (Perkin-Elmer) and quantified by standard protocols (50).

Affinity and coprecipitation assays. Affinity precipitation reactions using the GST–Rho-binding domain (RRBD) of rhoA (GST-RRBD), which precipitated GTP-bound RhoA, and the GST–Rac-binding domain of PAK1 (PBD), which precipitated GTP-bound Rac or Cdc42, were done per the manufacturer’s recommendations (Cytoskeleton Inc., Denver, Colo.) to determine the amounts of activated cellular RhoA, Rac1, and Cdc42 after HHV-8 infection. Briefly, cells were treated with agonists for different time periods, washed with phosphate-buffered saline (PBS), and lysed in RIPA buffer (50). The lysates were clarified, normalized to equal amounts of total proteins, and incubated with glutathione beads containing bound GST-PBD or GST-RRBD for 90 min at 4°C. Bound Rac1 and RhoA were resolved by SDS–12% PAGE and immunoblotted with rabbit polyclonal antibodies against Rac1, Cdc42, and RhoA. For analyses of the association of Dia2 with RhoA, coaffinity precipitation was performed. Lysates were treated with GST-RRBD beads to precipitate the activated GTP-bound RhoA. After being washed, the beads were boiled in 2× sample buffer, resolved by SDS–7.5% PAGE, and immunoblotted with rabbit anti-human Dia2 antibodies.

Cytotoxicity assay. The cytotoxicities of various inhibitors were assessed by use of a lactate dehydrogenase (LDH) cytotoxicity assay kit (Promega) as described previously (50).

Confocal microscopic analysis of HHV-8 trafficking in the cytoplasm. Serum-starved HFF cells in chamber slides were preincubated with nocodazole or LY294002 before being infected with HHV-8 at ~50 copies per cell. At 1 h p.i., the cells were washed, fixed for 15 min with 3.7% formaldehyde in PBS at room temperature, permeabilized for 3 min with 0.1% Triton X-100, and blocked for 30 min with 10% normal goat serum (Sigma) in PBS. The cells were incubated with a 1:100 dilution of rabbit polyclonal immunoglobulin G (IgG) against the HHV-8 capsid ORF65 protein (45) and with a 1:500 dilution of a mouse anti-α-tubulin MAb for 1 h at room temperature. After being washed with PBS, the cells were incubated with goat anti-rabbit IgG–Alexa 488 and goat anti-mouse–Alexa 594 (10 µg/ml) for 1 h at room temperature, washed, and mounted with a slowly fading antifade reagent containing DAPI (4′,6′-diamidino-2-phenylindole). The slides were examined with an LSM 510 confocal microscope and software version 2.8 (Carl Zeiss), and double staining was analyzed by use of the 495 and 561 nm bands of laser lines from a water-cooled argon-krypton laser. The digital images were processed with the LSM Image browser and Adobe Photoshop 5.5.

RESULTS

Depolymerization of microtubules, but not microfilaments, reduces infection by HHV-8. HHV-8 enters target cells within minutes after infection (3, 4, 43), which is accompanied by the formation of actin stress fibers, lamellipodia, and filopodia, an indication of Rho GTPase induction and modulation of the cytoskeleton during the early stages of infection (50). To investigate the role of HHV-8-induced cytoskeletal dynamics in the infectious process, we first analyzed the effect of depolymerization of the MTs by nocodazole and depolymerization of the actin MFs by cyto D and lat A (26) on GFP–HHV-8 infection. HFF cells that had been preincubated with nontoxic doses of nocodazole, cyto D, and lat A for 1 h at 37°C were infected with GFP–HHV-8 for 2 h in the presence of inhibitors. Under these conditions, immunostaining revealed the complete depolymerization of MTs (data not shown). The target cells were washed to remove the inhibitors and unbound virus and then further incubated for 3 days before enumerating GFP-expressing cells indicative of HHV-8 infection. Nocodazole inhibited GFP–HHV-8 infection significantly in a dose-dependent manner, with about 62% ± 3% and 73% ± 4% inhibition concentrations of 5 and 10 µg/ml, respectively (Fig. 1A). In contrast, cyto D and lat A did not alter the infection significantly even at concentrations of 10 µg/ml and 10 µM,
respectively (Fig. 1A), and these treatments were shown previously to profoundly alter actin polymerization (29).

To further ascertain the specificity of GFP–HHV-8 inhibition by nocodazole, we quantified the relative copy numbers of HHV-8 latency-associated ORF73 mRNA by real-time RT-PCR (43) and normalized these numbers to the numbers of glyceraldehyde-3-phosphate (GAPDH) copies in the same samples. Preincubation of the virus with 100 μg of heparin/ml blocked >80% of HHV-8 ORF73 gene expression (data not shown). Nocodazole reduced the ORF73 expression significantly, with about 30% ± 3% and 45% ± 7% inhibition at concentrations of 5 and 10 μg/ml, respectively (Fig. 1B). The expression levels of cellular GAPDH gene expression were unaffected. In contrast, cyto D and lat A did not affect ORF73 expression (Fig. 1B). These results suggested that HHV-8 requires intact microtubules for efficient infection of target cells.

HHV-8 infection modulates host cell microtubule dynamics. To determine whether HHV-8 infection affects target cell MT dynamics, we next investigated the polymerization (aggregation) of MTs at early times p.i. Serum-starved HFF cells were infected with HHV-8 (five copies per cell) for various times, fixed, permeabilized, and stained for MTs by the use of anti-tubulin antibodies. Serum-starved uninfected cells exhibited the classical pattern of finely-spread-out loose bundles of MTs radiating from the perinuclear nucleation center of MTs, the microtubular organizing center (MTOC), towards the edges of the cell (Fig. 2A, panel 1). As early as 30 min p.i., HHV-8 induced the aggregation of MTs, leading to an increased thickening of MT bundles (Fig. 2A, panel 2). These HHV-8-induced changes were comparable to the effects observed in HFF cells 30 min after a treatment with 20 ng of LPA/ml (data not shown). The HHV-8-induced thickening of MTs into bundles and the aggregation of MTs were sustained for at least 90 min p.i. (Fig. 2A, panels 3 and 4). By about 2 h p.i., the MTs returned to the classical spread-out pattern (Fig. 2A, panels 5 and 6). These data demonstrate a transient reorganization of the MT network into bundles, replacing the normal MT cytoskeletal morphology, and suggest that there is a modulation of microtubule dynamics early during infection by HHV-8.

HHV-8 infection modulates MTs and induces hyperacetylation. Under physiological conditions, acetylation and deacetylation act as powerful and dynamic means of controlling MT dynamics (55). Cellular structures that cross-link MTs along their length or cap their ends are known to cause acetylation on MTs and their stabilization (55). Since hyperacetylation is a quantitative indication of changes in MT stabilization, to confirm the influence of HHV-8 on MT dynamics, we next quantified the levels of MT acetylation by Western blot analysis. Uninfected cells contained a moderate level of acetylated MTs (Fig. 2B, lane 1). In contrast, MTs were heavily acetylated in the infected cells, with >2.5-, 4-, and 3-fold increases in acetylation by 30 min, 1 h, and 2 h p.i., respectively (Fig. 2B, lanes 2 to 4, and Fig. 2C), which returned to the basal level by 3 h p.i. (Fig. 2B, lane 5). The levels of total α-tubulin remained unaltered, thus demonstrating the specificity of acetylation (Fig. 2B). The HHV-8-induced hyperacetylation was comparable to the induction by LPA, a known inducer (Fig. 2B, lanes 6 to 8). The observed acetylation was also confirmed by determining the relative amounts of acetylated tubulin in HHV-8-infected cells by an immunofluorescence assay (data not shown). MT hyperacetylation further suggested that HHV-8 profoundly influences the MT dynamics during the early stages of target cell infection.

Microtubule depolymerizing agents reduce the transport of HHV-8 DNA to the nucleus. Our earlier studies have shown that HHV-8 internalization via endocytic vesicles in HFF and BJAB cells occurs as early as 5 min p.i. (3, 6). We also detected internalized viral DNA in target cells as early as 5 min p.i. whose levels increased rapidly during the first 60 to 90 min of infection, reaching a plateau around 90 to 120 min p.i. (43). Since the reduction in HHV-8 infectivity and ORF73 gene expression in cells with depolymerized MTs (Fig. 1A and B) may have been due to interference in virus binding or internalization or at postentry stages such as transport of the virus capsid to the cell nucleus and delivery of viral DNA to the nucleus, we next investigated the stage at which MTs play a role in HHV-8 infection. As an initial step, we examined the kinetics of HHV-8 DNA delivery into infected cell nuclei. HFF cells were infected with HHV-8 for various times, and pure nuclear fractions were isolated, and relative copy numbers of HHV-8 ORF73 DNAs were extracted from the isolated nuclei, and 100 ng of total DNA was quantified by real-time DNA PCR with HHV-8 ORF73 primers. Relatively rapid nuclear delivery of HHV-8 DNA, detectable as early as 30 min p.i., was observed, and the DNA copies continued to accumulate over time, reaching a plateau between 180 and 240 min p.i. (Fig. 3B).

HHV-8 interacts with cell surface HS during the initial attachment stage of infection (3). We next determined whether the inhibition of HHV-8 infection in cells with depolymerized MTs was due to the inhibitors’ ability to block virus binding to the target cells. Similar to our previous findings (3), heparin at a concentration of 10 μg/ml inhibited >90% of [3H]thymidine-labeled HHV-8 binding to HFF cells (Fig. 3C, open bars). In contrast, no effect was seen with nocodazole, Colcemid, cyto D, paclitaxel, and NH4Cl (Fig. 3C, open bars). To determine whether the reduction in HHV-8 infectivity and ORF73 gene expression in cells with depolymerized MTs was due to interference at the virus internalization stage of infection, we preincubated cells with various drugs that disrupt MFs or MTs for 1 h, infected them with the virus for 2 h, washed them to remove unbound virus, and treated them with trypsin-EDTA to remove bound but noninternalized virus. The total DNA was isolated, and relative copy numbers of HHV-8 ORF73 were estimated by real-time DNA PCR. HHV-8 internalization was inhibited ~90% by heparin, and no effect was seen with nocodazole, Colcemid, cyto D, paclitaxel, and NH4Cl (Fig. 3C, closed bars). These results demonstrated that nocodazole and Colcemid inhibit at postattachment and postinternalization stages of infection.

To determine whether the reduction in HHV-8 infectivity
and ORF73 gene expression by nocodazole and Colcemid was due to interference at postentry steps such as transport of the virus capsid to the cell nucleus and delivery of the viral DNA to the nucleus, we preincubated HFF cells with the MT-specific inhibitors nocodazole and Colcemid and the MF-specific inhibitors cyto D and lat A for 1 h at 37°C. These cells were infected with HHV-8 at 37°C in the presence of inhibitor for 3 h, and infected cell nucleus-associated HHV-8 DNA copy numbers were quantified. Our earlier studies demonstrated a significant reduction in GFP–HHV-8 infectivity and ORF73 mRNA expression when HFF cells were pretreated with NH$_4$Cl, a lysosomotropic agent that inhibits the acidification of endosomal compartments (6). HHV-8 nuclear trafficking was also reduced about 68% ± 3% with a 100 mM concentration of NH$_4$Cl (Fig. 3D). Nocodazole and Colcemid incubation significantly blocked viral DNA delivery to the nucleus in a dose-dependent manner (Fig. 3D). In contrast, pretreatment with cyto D did not inhibit the nuclear delivery of HHV-8.
DNA (Fig. 3D). To confirm that the lack of effect by cyto D was not due to the slow kinetics of MF depolymerization, we also treated HFF cells with 5 μM lat A, which is known to have much more rapid kinetics of MF depolymerization than cyto D. The lat A inhibitor also did not significantly affect the nuclear trafficking of HHV-8 DNA (Fig. 3D). The treatment of cells with paclitaxel (Taxol), the prototypic microtubule-stabilizing drug affecting the tubulin-microtubule equilibrium, did not affect nuclear transport (Fig. 3D), thus indicating a requirement for the dynamic nature of the MTs in HHV-8 DNA.
transport. These studies suggested that the inhibition of HHV-8 infectivity by nocodazole may be due to interference in the transport of the virus capsid and the delivery of viral DNA into the nuclei and that HHV-8-induced MT dynamics play a vital role in the nuclear trafficking of viral DNA. These results also suggested that although HHV-8-induced actin MF remodeling (50), the MFs may not play a significant role in the infectious process, at least during the early phases of infection.

HHV-8 induces activation of RhoA and Rac1 GTPases in target cells. Even though many viruses are known to exploit the MTs and their associated motors for nuclear trafficking (7, 24, 28, 38, 44, 47, 61, 62, 69), the host signaling pathways exploited by these viruses to mediate this process and the mechanism of signal induction remain largely unknown. Recent studies have demonstrated potential links between RhoA, Rac1, and Cdc42 GTPases and microtubule dynamics (12, 22, 37, 40, 53, 68).

Since our studies have demonstrated the integrin-dependent activation of PI-3K and Rho GTPase as well as cytoskeletal rearrangements in HHV-8-infected cells (50), we next examined the potential links between HHV-8-induced signaling pathways and the regulation of MT dynamics.

As a first step, we examined Rho, Rac, and Cdc42 activation during HHV-8 infection by affinity precipitation using GST-RBD or GST-PBD followed by Western blot analysis. Compared to the case for uninfected cells, the RhoA-GTP and Rac1-GTP levels in infected cells were increased about 3.0- to 5.0-fold (Fig. 4), and no induction of Cdc42 was observed (data not shown). Although peak levels of RhoA and Rac1 activation were observed at 5 min p.i., the Rac1-GTP activation was more sustained than the RhoA-GTP induction (Fig. 4). HHV-8 induced robust RhoA- and Rac1-GTP activities in infected cells which were comparable to induction by LPA (Fig. 4A, lanes 7 and 8) or phorbol myristate acetate (PMA) (Fig. 4B, lanes 6 to 8). The total RhoA or Rac level in infected cells was unchanged (Fig. 4A and B, bottom panels), thus demonstrating the specificity of GTP activation. These results further supported our earlier morphological observation that Rho GTPases are activated by HHV-8 early during infection (50). HHV-8 interacts with the α3β1 integrin via its gβ protein, and virus binding studies suggested that α3β1 integrin is one of HHV-8's entry receptors (5, 60). In order to test the specificity of HHV-8-induced Rho GTPase activation, we preincubated HHV-8 with different concentrations of soluble α3β1 or control α5β1 integrin before adding the virus to target cells for 5 min. As observed before (Fig. 4), HHV-8 induced robust RhoA- and Rac1-GTP activities in infected cells (Fig. 5A and B, lanes 2). A dose-dependent reduction in the HHV-8-induced RhoA- and Rac1-GTP activities was observed when the virus was preincubated with α3β1 integrin (Fig. 5A and B, lanes 3 and 4, and Fig. 5C). No effect was seen with the α5β1 integrin treatment (Fig. 5A and B, lanes 5, and Fig. 5C). Minimal Rho GTPase activation by HHV-8 was observed in cells that were preincubated with CdTxB, a specific inhibitor of Rho GTPases (Fig. 5A and B, lanes 6).

Modulation of Rho GTPases affects nuclear delivery of HHV-8 DNA. The glucosyltransferase CdTxB targets different Rho GTPases and efficiently blocks the interaction of Rho GTPases with their effectors, thus resulting in functionally inactive GTPases (1, 18). In contrast, *E. coli* cytotoxic necrotic factor 1 (CNF-1) activates Rho GTPases through the deamination of a pivotal glutamine residue (Glu 63 of Rho and Glu 61 of Cdc42 and Rac) involved in GTP hydrolysis (2). Upon deamidation, the intrinsic GAP-stimulated GTPase activity is blocked, thereby rendering the GTPase permanently active (2). These toxins are very specific for Rho GTPases and have been used extensively to study the roles of Rho GTPases in target cell infections by different pathogens (2, 40). When used at <300 ng/ml, CdTxB was nontoxic and induced 100% cell rounding without LDH release, whereas CNF-1 did not induce...
LDH release even when it was used at 10 μg/ml (data not shown). For an investigation of whether RhoA or Rac1 activation is required for the nuclear transport of HHV-8, HFF cells that had been preincubated with nontoxic doses of CdTxB or CNF-1 were infected for 3 h, and the viral DNA was quantified by real-time DNA PCR. Dose-dependent decreases in the HHV-8 DNA copy numbers associated with infected cell nuclei were observed for the CdTxB pretreatment, with about 72 and 62% inhibition at concentrations of 200 and 100 ng/ml, respectively (Fig. 6A). In contrast, CNF-1 increased the nuclear trafficking of HHV-8 DNA substantially in a dose-dependent manner (Fig. 6B), with as much as a 500% increase at 20 ng/ml. These results suggest that there is an active involvement of HHV-8-induced Rho GTPases in the nuclear trafficking of viral DNA during the initial stages of infection.

HHV-8-induced Rho GTPases stabilize MTs by hyperacetylation. Our results suggest that HHV-8 entry activates Rho GTPases, the known modulators of MF and MT dynamics (13, 20, 52). In contrast to the MF depolymerizing agents, MT depolymerizing agents substantially inhibited viral trafficking in the cytoplasm and the delivery of viral DNA to the nucleus. To decipher the role of Rho GTPases in cytoskeletal dynamics, especially those of MTs during HHV-8 infection, we preincubated cells with CdTxB before incubating them with HHV-8 for 60 min. The cell lysates were tested for hyperacetylated MTs by Western blot analysis. Compared to the case for mock-treated HFF cells (Fig. 7A, lane 1), HHV-8 induced a significant level of α-tubulin hyperacetylation (Fig. 7A, lane 2). The treatment with CdTxB reduced the tubulin hyperacetylation in a dose-dependent manner (Fig. 7A, lanes 3 to 5, and Fig. 7B), with about 49, 71, and 78% reductions in acetylation at concentrations of 100, 200, and 300 ng/ml, respectively (Fig. 7B). These results suggested that HHV-8-induced Rho GTPases contribute to MT hyperacetylation and stabilization.
HHV-8-induced RhoA GTPase activates diaphanous 2, which is involved in MT dynamic modulation. Since the studies described above demonstrated the importance of HHV-8-induced Rho GTPases in the nuclear trafficking of viral DNA and the regulation of MT dynamics, we next examined the contributing signaling pathways. Even though the Rho GTPases are believed to be essential for the regulation of MT dynamics, only recently have studies suggested that these may be mediated by the activation of several accessory molecules (27, 33, 37, 53). There is growing evidence that RhoA activates the diaphanous-related formin family molecules Dia1 and Dia2 (37, 53). Formins are one of the four major classes of poly-L-proline-containing proteins that form part of the signal transduction cascade that leads to rearrangement of the cytoskeleton. Rac and Cdc42 activate PAK1/2 (p21-activated kinase), which in turn inactivates the MT destabilizer Op18 (stathmin), thus promoting polymer growth (27). Rac and Cdc42 have also been shown to interact with MTs through a common effector, IQ-GAP, which binds CLIP-170, an MT-associated protein that is recruited to the plus ends of polymerizing MTs (33).

To determine whether HHV-8-induced RhoA activates Dia2, we examined the coprecipitation of Dia2 with activated RhoA-GTP. Activated RhoA-GTP that was affinity precipitated with GST-RBD beads was immunoblotted with antibodies against Dia2, and phosphorylation-specific antibodies were used to demonstrate the Rac- and Cdc42-dependent phosphorylation of PAK1/2 and stathmin. HHV-8 infection increased the RhoA-dependent activation of Dia2 in a time-dependent manner (Fig. 7C). The activation of Dia2 was seen as early as 1 min p.i., continued to increase for the initial 10 min, reaching a plateau between 20 and 30 min (Fig. 7C), and was sustained for about 60 min before reaching the baseline (data not shown). In contrast, no significant phosphorylation of Rac- and Cdc42-dependent PAK1/2 or total PAK (D, upper and lower panels, respectively) or phosphorylated stathmin or total stathmin (E, upper and lower panels, respectively).
HHV-8 capsids colocalize with microtubules, and MT depolymerizing nocodazole and a PI-3K inhibitor reduce cytoplasmic trafficking of HHV-8. The significant reduction in the nuclear accumulation of HHV-8 DNA by MT depolymerization and the modulation of MT dynamics by HHV-8-induced RhoA GTPase clearly demonstrated the important role of the MT network in HHV-8 trafficking in the infected cell. To confirm the above biochemical observations morphologically, we examined the infected cells by confocal microscopy. Untreated cells or cells that were preincubated with 10 μg of the MT inhibitor nocodazole/ml or a 50 μM concentration of the PI-3K inhibitor LY294002 were infected with HHV-8 at ~50 copies/cell and examined after 1 h, a time point when a significant amount of nuclear accumulation of HHV-8 DNA was beginning to occur (Fig. 3B). To visualize the incoming viral capsids, we used well-characterized rabbit antibodies against the HHV-8 capsid protein ORF65 (45). Anti-tubulin antibodies were used to visualize the MT cytoskeleton.

The confocal microscopic images were obtained sequentially with 1-μm-thick sections, and the representative sections shown in Fig. 9 are through the middle of the cell. In the absence of drug treatments, the ORF65 antibody reactivity was observed only in the periphery and was barely detectable in the cytoplasm, and the perinuclear accumulation of viral capsids was significantly decreased (Fig. 9G to I). The effect of nocodazole was reversible since when the infected cells were analyzed 1 h after drug removal, the MTs had re-polymerized, accompanied by the reappearance of viral capsids near the nuclear rim (data not shown).

PI-3K induction has been observed as an upstream event of Rho GTPase activation in the HHV-8- or HHV-8 gB-induced signaling pathways (50, 60). The inhibition of PI-3K by LY294002 blocked the HHV-8-induced Rho GTPases and the accompanying morphological changes and blocked the entry of the virus into the target cells (50, 60). The treatment with LY294002 also resulted in disruption of the MT network and, consequently, the absence of perinuclear accumulation of the HHV-8 capsids (Fig. 9J to L). The ability of PI-3K inhibitors to block >80% of HHV-8 entry into target cells (60), together with the involvement of PI-3K in Rho GTPase activation involved in the formation of endocytic vesicles, their fission, the movement of vesicles in the cytoplasm, and the modulation of microtubule dynamics, suggests that the observed weak capsid signal in PI-3K inhibitor-treated cells was probably not due to the nonspecific effect of the drugs but to a specific effect on PI-3K and the associated signaling pathways preventing effi-
cient entry of the virus. Since nocodazole does not affect the endosomal pH but inhibits the microtubule-dependent transport of endosomal carrier vesicles to late endosomes (10), MT depolymerization may affect the migration of HHV-8-containing endocytic vesicles. In addition, since MTs may also play important roles in capsid movement after release from the endocytic vesicles, these results suggest that the HHV-8-induced polymerization of MTs plays important roles in the nuclear trafficking of HHV-8. These data clearly demonstrate the importance of the HHV-8-induced signal cascade and the polymerization of MTs in the nuclear trafficking of HHV-8.

Dynein motor function is critical for transport of HHV-8 DNA to the nucleus. Dyneins are large protein complexes that function as MT-based molecular motors generating the driving force towards the minus end of microtubules, with the intermediate and light chains presumably involved in dynein attachment to the appropriate cargo (41). Many viruses sequester the dynein machinery of infected cells to move along the microtubules and gain access to the cell nucleus (24, 47, 62, 69). Since the requirement of intact MTs for the molecular trafficking of HHV-8 became apparent by the results described above, we examined the role of the dynein motor complex in this process.

The cytoplasmic dynein complex associates with a second protein complex called dynactin that contains four molecules of dynamitin among other molecular components (41). The overexpression of dynamitin disrupts the dynactin complex and the dynein motor function (30). To determine the role of dynein motors in HHV-8 nuclear trafficking, we used a p50/dynamitin plasmid expressing c-Myc-tagged p50/dynamitin and enhanced GFP (EGFP) under the control of a cytomegalovirus (CMV) promoter (30). 293 and CV-1 cells were transfected with this plasmid, and about 60 to 70% EGFP-expressing cells were observed under our transfection conditions. The expression of dynamitin was further verified by IFA (Fig. 10A) and immunoblot analysis with antibodies detecting the c-Myc tag (Fig. 10B). These transfected cells were infected with HHV-8 for 3 h, and viral DNA copies associated with the infected cell nuclei were quantified by real-time DNA PCR. Compared to the case for cells carrying a control EGFP vector plasmid, a significant reduction (~50%) in the nuclear trafficking of

![FIG. 9. Confocal microscopic examination of HHV-8 trafficking in the cell cytoplasm. Untreated HFF cells (A to F) or HFF cells preincubated with 10 μg of nocodazole/ml (G to I) or with 50 μM LY294002 (J to L) were infected with HHV-8 at ~50 copies/cell for 1 h at 37°C. The cells were washed, fixed, and permeabilized before being doubly labeled with preimmune IgG antibodies (A) (red), rabbit anti-HHV-8 ORF65 IgG antibodies (D, G, and J) (red), and a MAb against α-tubulin (B, E, H, and K) (green). Nuclei were stained with DAPI (blue). Laser scanning confocal microscopic images were obtained sequentially at a 1-μm thickness, and representative sections shown are through the middle of the cell (10 μm deep). Magnification, ×40.](http://jvi.asm.org/)
HHV-8 DNA was observed in 293 (293/p50) and CV-1 (CV-1/p50) cells expressing p50/dynamitin (Fig. 10C). Similar amounts of virus binding and internalization were observed in p50/dynamitin-expressing and control cells (data not shown), thus suggesting that the reduction in nucleus-associated HHV-8 DNA copy numbers was not due to reduced HHV-8 binding or internalization. Sodium orthovanadate (Na₃VO₄) is a well-described inhibitor of dynein activity (32, 41). The preincubation of HFF cells with a nontoxic 100 μM concentration of Na₃VO₄ reduced the amount of infected cell nucleus-associated HHV-8 DNA about 45% (Fig. 10C), and the reduction was about 68% at a concentration of 200 μM (data not shown), thus validating the specificity of the above observations. Together, these results strongly demonstrate a role for dynein motors in the cytoplasmic trafficking of HHV-8 and in the delivery of viral DNA to the nucleus.

DISCUSSION

The eukaryotic cytoskeleton comprising MFs, IFs, and MTs performs a broad range of complex cellular activities, such as vesicle and particle movements, cell motility, cell shape determination, and chromosome movement during mitosis (35). Such involvement and its dynamic nature make the cytoskeleton a good target for exploitation by viruses, and many viruses hijack the cytoskeleton to facilitate their movement in the cytoplasm to the nucleus or to the perinuclear virus factories (7, 23, 25, 61, 62, 69). For example, at early times after infection, baculovirus (Autographa californica) induces the thick actin bundles to assist with transport of the viral genome into the nucleus (17). Vaccinia virus induces actin polymerization directly behind the virus particle as a means of propelling the virus through the cell (23). Simian virus 40 and polyomavirus require both MF and MT networks for transport to the infected cell nucleus (34, 54), and HIV-1 and HSV-1 associate with the cytoplasmic MT-dependent dynein complex and utilize the MT network for nuclear transport (28, 47). In the present study, we described extensive and thorough analyses of the mechanism of HHV-8 virion transport to the nucleus. These studies are the first report on the exploitation of the cytoskeleton by HHV-8 during its entry into target cells as well as the first report demonstrating the direct role of virus-induced host cell signal pathways in the cytoplasmic transport of viral capsids.

The role of the cytoskeleton in the intracellular transport of viruses has been demonstrated by the physical association of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, our studies suggest that HHV-8 infection and trafficking do not require intact MFs. In contrast, several lines of evidence, such as the physical association of HHV-8 with the cytoplasmic transport of viruses with the cytoskeleton and/or by the use of depolymerizing agents that affect the trafficking of viruses to the nucleus or perinuclear region. The uptake of adenovirus by target cells can be inhibited by a treatment with the MF-depolymerizing agent cyto D (51, 61, 62, 69). Although HHV-8-induced morphological changes such as the formation of actin stress fibers, lamellipodia, and filopodia (50, 60) are suggestive of a modulation of actin MFs, it
may be one of the reasons for the incomplete inhibition of HHV-8 nuclear trafficking by nocodazole and Colcemid.

The MT network, which plays a critical role in the nuclear trafficking of HHV-8, is a dynamic and polarized structure. Relatively stable minus-ends are localized to the MTOC, which is typically located at the perinuclear position in cultured cells. Directional movement along MTs is mediated by motor proteins, which hydrolyze ATP to induce conformational changes in their structure. The dynamic, fast-growing, and fast-shrinking plus ends extend toward the cell periphery, and kinesin superfamly motors typically move toward the MT plus ends (24, 46, 47, 62–65). The dynein motors mediate minus-end-directed movement towards the nucleus, and adenoviruses and HSV-1 utilize the dynein motors and MTs for the transport of capsids in the cytoplasm (28). Similarly, HHV-8 utilizes the dynein motors to facilitate movement, as shown by a reduction in HHV-8 nuclear trafficking by the overexpression of dynactin, which inhibits dynein-dynactin complex formation, and by Na$_3$VO$_4$. HSV-1 VP22 induces the aggregation of MTs and interacts with the intermediate chain of cytoplasmic dynein via its UL34 protein (70). Incoming nucleocapsids of pseudorabies virus, an alphaherpesvirus that is closely related to HSV-1, were also shown to be associated with MTs and to utilize them for movement to the nucleus (38). This interaction is believed to be mediated by the PRV UL25 protein, a minor but essential component of the capsid, which colocalizes with MTs and accumulates at the MTOC (38). Whether HHV-8 encodes a protein(s) that physically associates with the MT motor and aids in the movement of cargo along the MT network is not currently known and needs to be investigated.

The utilization of the MT network by HHV-8 is not a unique observation, as other viruses have been shown to require the MF or MT cytoskeleton. However, this is the first demonstration of a direct role for the signal cascade induced by a virus in cytoplasmic trafficking. The complex signaling events associated with internalization of the bound virus and trafficking of the internalized capsid remain largely unknown. The well-studied adenovirus (Ad) types 2 and 5 bind to a primary receptor, the coxsackie virus and adenovirus receptor. Coxsackie virus and adenovirus receptor-docked particles activate the integrin...
coreceptors, which triggers a variety of cell responses, including endocytosis and macroinocytosis (51, 62). A major question arising from Ad entry studies is whether integrins promote virus entry and infection via specific cell signaling events. Similar to our results with HHV-8, adenoviruses induce the ERK1/2 mitogen-activated protein (MAP) kinases via the integrin-dependent focal adhesion kinase (pp125FAK) (51). FAK activation appears to play little role in integrin-mediated Ad endocytosis since the virus infected FAK null Du3 mouse fibroblast cells with a similar efficiency as that for parental FAK+/− Du17 cells (51). This is in contrast to HHV-8, whose infection efficiency is severely impaired in FAK null Du3 cells (50). Adenovirus internalization was shown to be regulated by the PI-3K and p130CAS proteins (51). Pharmacologic inhibitors of PI-3K but not of ERK MAP kinases inhibited Ad internalization and infection (51). Similar to the results of our study, the entry of adenoviruses was also negatively regulated when Rho GTPases were inhibited or when dominant-negative mutants of Rac and Cdc42 were overexpressed (51). The postentry trafficking of adenovirus capsids activates the protein kinase A and p38/MAPK pathways, and such activation appears to enhance the minus-end-directed transport of adenovirus on MTs (65). However, how adenovirus-induced Rho GTPase and other signaling pathways aid in transport in the cytoplasm is not fully understood.

The cytoskeletal MFs, MTs, and IFs are highly dynamic structures that cooperate in response to extracellular stimuli and allow the cell to modulate its shape, to migrate, and to divide. The Rho GTPases are tightly involved in the coordination of these networks, and RhoA, Rac, and Cdc42 are best known for regulating the actin cytoskeleton (52). However, only very recently have studies begun to dissect out the role of Rho GTPases and their effector molecules in the modulation of cytoskeletal elements. Emerging evidence clearly demonstrates the influence exerted by the Rho GTPases over the MT network (65). Since HHV-8 enters HFF, 293, and BJAB cells via endocytosis (6, 36) and since microtubules are critical for the transport of endosomal carrier vesicles to late endosomes (8, 10, 19), it is reasonable to assume that the role of MTs in HHV-8 trafficking may also be at the stage of transport from early to late endosomes (8, 10, 19). In this regard, it is interesting that recent studies have uncovered a multitude of control points for Rho GTPases in the endocytic pathways and an intimate connection between these signaling proteins and intracellular traffic (56). The activated Rac, Rho, Cdc42, and Rab5 GTPases act as molecular switches in various signal transduction pathways and are essential for the modulation of actin dynamics, the formation of endocytic vesicles, their fission, cytoskeletal transport, endosome movement, the fusion of endocytic vesicles, and recycling (56).

HHV-8 and HHV-8 gB interactions with integrin, the induction of FAK–Src–PI-3K, the upstream mediator of Rho GTPases, the activation of RhoA, and the associated diaphanous 2 protein required for microtubular stabilization and for regulation of the movement of endocytic vesicles suggest that HHV-8 manipulates signaling pathways, resulting in aid in the movement of its capsid or tegument in the cytoplasm. Our data demonstrate a link between HHV-8-induced signaling pathways and MT network dynamics, which together with the dynein motor complex collectively facilitate the cytoplasmic transport of HHV-8 (Fig. 11). Thus, our findings further support our earlier suggestion (5, 50) that besides providing a conduit for the entry of the viral genome into the interior of cells, the interactions of HHV-8 with integrins and other host cell surface molecules and the accompanying preexisting host cell signaling cascades have an active role in virus entry, transport of the viral genome to the nucleus, and the establishment of a successful infection. The results presented here will lead to further exploration of the dynamic interactions of HHV-8 with the various components of cytoskeletal and signaling pathways during entry and infection, which may lead to the development of novel strategies to block the establishment of target cell infection by HHV-8.

ACKNOWLEDGMENTS

This study was supported in part by Public Health Service grants CA 75911 and CA 099925 to B.C. and by a University of Kansas Medical Center Biomedical Research Training Program postdoctoral fellowship to P.P.N.

We thank Ling Zeng for technical assistance. We thank Jeffrey Vieira (Fred Hutchinson Cancer Research Center, Seattle, Wash.) for kindly providing the GFP-HHV-8 (rKSHV.152)-harboring BCBL-1 cells. We thank Gudula Schmidt (Universitat Freiburg) for E. coli CNF-1, Andre Sobel (Inserm, Paris, France) for antibodies against stathmin and pSer16-stathmin, Richard Vallee (Columbia University) for the p50/dynamitin construct, and Elizabeth Petroske of the Confocal Imaging Center at the University of Kansas Medical Center for confocal image acquisition.

REFERENCES

