Biodistribution of Radioiodinated Adenovirus Fiber Protein Knob Domain after Intravenous Injection in Mice

Vibhudutta Awasthi,1† George Meinken,1 Karen Springer,2 Suresh C. Srivastava,1 and Paul Freimuth2*

Biology Department2 and Medical Department,1 Brookhaven National Laboratory, Upton, New York 11973

Received 18 December 2003/Accepted 11 February 2004

The knob domains from the fiber proteins of adenovirus serotypes 2 and 12 were labeled with radioiodine and then injected into the bloodstream of mice. Knob proteins with functional binding sites for the coxsackie and adenovirus receptor (CAR) were cleared rapidly from the circulation, with radioactivity appearing predominantly in the liver relative to other tissues (51). Mouse liver was shown to metabolize the labeled knob to release free radioiodine. Thus, in addition to their transport via the Na/I symporters in the gastric mucosa and thus indicates that free radioiodine must be released from the labeled knob protein. Our earlier analysis of the biodistribution of the 99mTc-labeled recombinant knob domain following intravenous administration in mice also suggests that CAR may be highly accessible in the liver relative to other tissues (51). Mouse liver was shown to contain about 10^13 saturable binding sites for 99mTc-labeled knob (capacity for binding at 3 μg of knob protein) and to clear essentially 100% of subsaturating doses of knob from the blood within the first minute of circulation (51). The localization of CAR molecules in the liver has not been examined in detail, but it seems unlikely that CAR sequestered in tight junctions could clear knob from the blood with such rapid kinetics.

Here we analyzed the biodistribution of radioactivity in mice following injection of radioiodinated knob proteins into the bloodstream. Knob proteins with intact CAR-binding activity were cleared rapidly from the blood, but in contrast to the findings with 99mTc-labeled knob, radioactivity did not accumulate in the liver but instead was found at elevated levels in the stomach. Stomach activity typically results from transport of free radioiodine from the blood into the gut lumen by Na/I symporters in the gastric mucosa and thus indicates that free radioiodine must be released from the labeled knob protein. Our results suggest that CAR molecules in the liver not only remove knob protein from the blood with high efficiency but also deliver bound knob to a cellular compartment where it is metabolized to release free radioiodine. Thus, in addition to their...
Materials and Methods

Expression and purification of recombinant knob domains. Wild-type and mutant knob domains derived from adenovirus serotypes 2 and 12 (Ad2 and Ad12) were expressed in E. coli with N-terminal His tags by using the pET15b expression vector (Novagen, Inc., Madison, Wis.) as previously described (22). Knob mutants were constructed by PCR mutagenesis using the following mutagenic oligonucleotide primers: 5'-GTACCTGACTCCCTTGTTAAGAACCCCA for Ad2 knob C42SN, 5'-AAATTGTGACCTGGCTCCTTGCGG for Ad2 knob A0480 P409A (SP/EA), 5'-GCAGTTGATTGATGGCTCA GGAG for Ad12 knob P417S, and 5'-AGGCTGAATTTGCTCCTTGCGGTA GGAGTT for Ad12 knob P408E P409A (PP/EA). Knob proteins were purified from cell lysates by immobilized metal affinity chromatography on nickel-nitri-
elactic acid coupled agarose beads (Qiagen, Inc., Valencia, Calif.). Bound knob proteins were eluted with imidazole, dialyzed against phosphate-buffered saline containing sodium dodecyl sulfate (SDS) according to the method of Laemmli (26). Conditions for nondenaturing polyacrylamide gel electrophoresis (42) and the use of this method to detect the interaction of wild-type and mutant Ad2 knob proteins with CAR D1 (5) have been described previously. The fluorescence anisotropy-based assay for knob-CAR binding also has been detailed elsewhere (22).

Radioiodination of knob proteins. Knob proteins were labeled on tyrosine with 131I by using iodogen beads (Pierce Biotechnology, Inc., Rockford, Ill.) according to the manufacturer's instructions. Briefly, a bead was washed with Tris-
ioaidination buffer (TIB) (125 mM Tris-HCl [pH 6.8], 150 mM NaCl) and dropped into a reaction tube containing 100 μl of radioactivity (50 μM O-CI of Na131I). After 5 min was allowed for oxidation of iodide species, knob protein (80 μl, 1 mg/ml) was added to the tubes and the reaction was allowed to proceed for five more minutes. The reaction was stopped by addition of 25 μl of 1-tyrosine solution (10 mg/ml in TIB). Unincorporated iodine was removed by ultrafiltration in a 10-
ulteran centrifuge cartridge (Pall Corp., Ann Arbor, Mich.). Protein in the retentate was diluted to 500 μl with saline and filtered through a 300-kDa-cutoff ultrafiltration cartridge to eliminate protein aggregates. Labeled proteins in the filtrate were characterized by electrophoresis in polyacrylamide gels under denaturing and nondenaturing conditions before injection into mice. Proteins in gels were visualized by Coomassie blue staining.

Activity and stability of knob domains used for biodistribution analysis. Wild-type knob domains from the fiber proteins of Ad2 and Ad12, and mutant Ad2 and Ad12 knobs with decreased or enhanced affinity for CAR, were expressed in E. coli with N-terminal His tags and purified by metal affinity chromatography. Knob trimers are resistant to denaturation by SDS at moderate temperatures (21), reflecting a highly stable trimer interface (42, 48). We observed that while freshly isolated wild-type Ad2 knob trimers were stable in SDS (Fig. 1, lanes 1 and 2), purified Ad2 knob trimers that had been stored at 4°C for 1 to 2 days were dissociated to polypeptide monomers and dimers by incubation in Laemmli buffer at room temperature (lane 4), whereas Ad2 SP/EA, Ad2 C42SN, and wild-type Ad12 trimers were stable under these conditions (lanes 6, 8, and 9, respectively). Intact knob trimers do not uniformly bind SDS; therefore, the different electrophoretic mobilities of Ad2 and Ad12 knob trimers result from differences in surface charge rather than in molecular size. Proteins were visualized by staining the gels with Coomassie blue. The molecular sizes (in kilodaltons) of protein standards loaded in lanes M are indicated.

Results

Activity and stability of knob domains used for biodistribution analysis. Wild-type knob domains from the fiber proteins of Ad2 and Ad12, and mutant Ad2 and Ad12 knobs with decreased or enhanced affinity for CAR, were expressed in E. coli with N-terminal His tags and purified by metal affinity chromatography. Knob trimers are resistant to denaturation by SDS at moderate temperatures (21), reflecting a highly stable trimer interface (42, 48). We observed that while freshly isolated wild-type Ad2 knob trimers were stable in SDS (Fig. 1, lanes 1 and 2), purified Ad2 knob trimers that had been stored at 4°C for 1 to 2 days were dissociated to polypeptide monomers and an apparent dimer species after incubation at room temperature in gel sample buffer containing 2% SDS and 5% β-mercaptoethanol (Fig. 1, lanes 3 and 4). By contrast, wild-type Ad12 knob trimers were resistant to denaturation by SDS after prolonged storage at 4°C (Fig. 1, lanes 9 and 10).

The relatively abundant polypeptide dimer generated by incubation of Ad2 knob in standard gel sample buffer (Fig. 1, lane 4) could be converted to polypeptide monomers by treatment with the strong reducing agent Tris(2-carboxyethyl)-phosphine hydrochloride (TCEP) (data not shown), suggesting that this species might result from disulfide bond formation between polypeptide subunits in knob trimers. The crystal structure of the Ad2 knob trimer (42) shows that the sulfhydryl groups of cysteine 428 of each polypeptide subunit are oriented toward the threefold axis of symmetry at the base of the knob, with a distance of 4.2 Å between sulfur atoms (Fig. 2A). Cysteine is not conserved at this position in knob domains from other Ad serotypes, and the structurally equivalent residue in Ad12 knob is asparagine. When cysteine 428 of Ad2 knob was
These results suggest that a disulfide bond formation upon air oxidation may produce the Ad2 knob polypeptide dimer species resolved by SDS-polyacrylamide gel electrophoresis (Fig. 1) and render the knob trimer sensitive to denaturation by SDS. Yellow, sulfur atoms. (B) Portion of the surface of the Ad2 knob trimer, showing the juxtaposition of lysine 420 from polypeptide chain A and lysine 513 from chain C. Electrostatic repulsion between these lysines may destabilize the trimer interface and promote denaturation by SDS. Also shown are aspartate 406 and serine 408 from polypeptide chain A. Mutation of serine 408 to glutamic acid renders the knob trimer resistant to denaturation by SDS. The introduced negative charge of Glu408 therefore may balance the positive charge on lysine 420, reducing the electrostatic repulsion across the trimer interface. Both panels were produced with the SwissPDB Viewer program (17).

converted to asparagine (C428N), the mutant trimers were stable in SDS after prolonged storage (Fig. 1, lanes 7 and 8). These results suggest that a disulfide bond can form between the cysteine 428 residues of two subunits of wild-type Ad2 knob trimers upon air oxidation and that formation of the disulfide bond may lock the knob trimer into an asymmetric conformation that is more easily invaded by SDS. As expected, the CAR-binding activity of the C428N mutant was intact, as indicated by a quantitative shift in its electrophoretic mobility after brief incubation with CAR D1 prior to electrophoresis under nondenaturing conditions (Fig. 3A).

The knob AB loop contributes about half of the amino acids in knob that directly contact CAR D1, and it was reported previously that the binding affinity of Ad12 knob for CAR was severely reduced by alteration of two contact residues (P417E P418A) in the AB loop by site-directed mutagenesis (5). To create a non-CAR-binding derivative of Ad2 knob for use as a control in biodistribution experiments, Ad2 knob residues S408 and P409, which correspond to P417 and P418 of Ad12 knob, were similarly altered by mutagenesis (S408E P409A). As expected, the resulting Ad2 knob mutant (SP/EA) was unable to form stable complexes with CAR D1, as shown by the absence of a mobility shift when the mutant protein was mixed with CAR D1 prior to electrophoresis in a nondenaturing polyacrylamide gel (Fig. 3A).

SP/EA mutant trimers unexpectedly were resistant to denaturation by SDS after prolonged storage at 4°C (Fig. 1, lanes 5 and 6), and the Ad2 knob crystal structure again suggested a possible mechanism for stabilization of the mutant trimers. Charge repulsion between the closely juxtaposed lysine 420 and lysine 513 side chains on adjacent subunits of wild-type Ad2 knob trimers might provide an opening into the trimer interface that can be invaded by SDS. The extra negative charge introduced by substitution of glutamic acid for serine at residue 408 is located close to the positively charged side chain of lysine 420 (Fig. 2B) and therefore might weaken electrostatic repulsion across the trimer interface between lysines 420 and 513.

Biodistribution analysis. We compared the biodistribution in mice of knob domains from two different adenovirus serotypes in order to examine the possible effects of variation in binding affinity for the CAR. The knob domain from Ad2 binds CAR with about eightfold greater affinity than does the knob domain from Ad12 (22). After being labeled with 131I by the iodobead method, C428N trimers were partially dissociated by SDS (Fig. 3B) but still retained their ability to interact with CAR D1 in vitro (Fig. 3A). Labeling with 131I did not measurably destabilize the SP/EA mutant trimers (Fig. 3B) or trimers of Ad12 knob (data not shown).

Mice were intravenously injected (via the tail vein) with 131I-labeled knob proteins and were then sacrificed at different times to determine the biodistribution of radioactivity in various organs. Typical biodistribution results with Ad2 knob proteins at 6 h postinjection are shown in Fig. 4A. Knob proteins with intact CAR-binding activity (wild-type and C428N mutant knob proteins) were cleared more rapidly from the blood than SP/EA mutant knob protein, which is unable to bind to CAR and was maintained in the blood circulation for a prolonged period. Radioactivity levels in all organs from mice injected with wild-type or C428N knob were similar to background.
levels in the blood, except for elevated radioactivity levels in the stomachs of some animals. The absolute amounts of radioactivity in the kidney, heart, and lungs were generally higher in mice injected with Ad2 knob than in mice injected with non-CAR-binding SP/EA knob. However, it should be noted that blood could not be completely removed from dissected organs before counting; therefore, the higher levels of radioactivity in the kidneys, hearts, and lungs of mice injected with SP/EA knob likely resulted from the elevated levels of the labeled SP/EA protein in the residual blood contained within these organs rather than from binding of the SP/EA knob protein to specific receptor sites within these organs.

The experiments were repeated with knob proteins that were labeled with 125I-labeled Bolton-Hunter reagent in order to control for possible effects of the different labeling strategies on knob protein stability in vivo. As was observed with the 131I-labeled knob proteins, 125I-labeled C428N mutant knob cleared more rapidly from the blood than 125I-labeled SP/EA mutant knob, which persisted in the blood for a prolonged period (Fig. 4B). In mice injected with the CAR-binding wild-type or C428N knob, radioactivity levels in most organs were at or below the background level in the blood, except for levels significantly elevated over background in the stomachs of all animals. Labeled SP/EA protein in the residual blood contained within the liver, kidney, heart, and lungs probably accounted for the greater absolute levels of radioactivity in these organs than in the corresponding organs from mice injected with the C428N protein. The similar overall results observed in these two experiments suggest that knob biodistribution in mice is not substantially altered by modification of surface-exposed tyrosine or lysine residues with radiiodine.

Mice were then coinjected with 131I-labeled C428N protein alone or with a 10-fold molar excess of unlabeled C428N protein, and radioactivity levels in the blood and various organs were determined 6 h later (Fig. 5A). In agreement with the results described above, by 6 h postinjection, C428N protein was mostly cleared from the blood, and most organs showed little accumulation of radioactivity above background levels except for the stomach, which had large accumulations above background. Coinjection of an excess of unlabeled C428N protein markedly slowed the clearance of 131I-labeled C428N knob from the blood, suggesting that knob clears from the blood through a specific pathway that requires the binding of knob to a saturable number of receptor sites. A more detailed time course study was then performed, where organs were harvested from mice at 1.5, 6, and 24 h after coinjection with 131I-labeled C428N and a 10-fold excess of unlabeled C428N knob (Fig. 5B). The elevated levels of radioactivity present in the circulation at 6 h postinjection were reduced to near-background levels by 24 h postinjection (Fig. 5B). Decreasing levels of radioactivity were detected at each time point in all organs except the stomach, which had a maximal level at 6 h. By 24 h, radioactivity levels in all organs, including the stomach, were reduced to near the background level.

A parallel set of experiments was conducted with the recombinant knob domain from Ad12, which binds CAR with approximately the same affinity as that of Ad2 knob (22). Two Ad12 knob mutants were included in the analysis: the PP/EA mutant, which cannot bind to CAR, and the P417S mutant, which has a binding affinity for CAR approximately equivalent to that of Ad2 knob (Fig. 6A). As was observed with Ad2 knob, Ad12 knob proteins that can interact with CAR (wild-type and P417S mutant) were mostly cleared from the blood by 6 h postinjection, whereas the nonbinding PP/EA mutant was retained in the blood for a prolonged period (Fig. 6B). At 6 h postinjection, differences in blood radioactivity levels between mice injected with wild-type versus P417S knob were not significant. The overall biodistribution of radioactivity in major organs was similar in mice injected with 131I-labeled wild-type versus P417S Ad12 knob. Relative to blood background levels,
mice injected with 131I-labeled wild-type or P417S Ad12 knob showed elevated levels of radioactivity in the stomach, as observed for CAR-binding Ad2 knob proteins. However, in contrast to the results with Ad2 knob, mice injected with 131I-labeled C428N alone and mice co-injected with excess unlabeled C428N were significant (P < 0.05) except for levels in the liver and muscle. (B) Mice were co-injected intravenously with 131I-labeled Ad2 C428N protein and a 10-fold molar excess of unlabeled C428N protein. Mice were sacrificed after 1.5, 6, or 24 h of circulation, and radioactivity in dissected organs was measured. Differences in organ radioactivity levels between the 1.5- and 24-h samples were all significant (P < 0.05). Differences between samples taken at 1.5 versus 6 h were significant (P < 0.05) for all organs except the spleen, lungs, and muscle. Differences between samples taken at 6 versus 24 h were significant for all organs except the lungs.

FIG. 6. Biodistribution of wild-type and mutant Ad12 knob proteins. (A) CAR-binding activities of wild-type (WT) Ad12 knob and the Ad12 knob P417S and PP/EA mutants were measured by fluorescent anisotropy using a fluorescein-labeled CAR probe as described previously (22). (B) Wild-type and mutant Ad12 knob proteins were directly labeled with 131I and injected intravenously into mice (via the tail vein). After 6 h of circulation, mice were sacrificed, and radioactivity in dissected organs was measured. Organ abbreviations are explained in the legend to Fig. 4. Differences in organ radioactivity levels between samples from mice injected with the non-binding PP/EA mutant versus wild-type knob were significant (P < 0.05) except for the spleen, kidneys, and lungs. Differences between PP/EA and P417S mutant samples were all significant (P < 0.05) except for kidney samples.

DISCUSSION

Here we investigated the biodistribution in mice of radioiodinated knob domains derived from the fiber proteins of Ad2 and Ad12. The biodistribution in mice of the 99mTc-labeled knob domain derived from the Ad5 fiber protein was described in an earlier report (51). The knob domains from these three serotypes bind specifically to CAR with high affinity (22, 24, 28). The results of the two biodistribution studies are in good agreement with regard to the rapid clearance of knob proteins from the blood. Clearance of 99mTc-labeled Ad5 knob from the blood was inhibited by coinjection of an excess of unlabeled Ad5 knob but not by coinjection of an excess of unlabeled knob derived from Ad3, which is unable to bind to CAR (8, 35). In the present study, clearance of radioiodinated Ad2 knob was inhibited by coinjection of unlabeled Ad2 knob. Furthermore, Ad2 and Ad12 knob mutants that cannot bind to CAR were cleared from the blood more slowly than the corresponding wild-type, CAR-binding forms of these proteins. Together these results support the conclusion that rapid clearance of
knob proteins from the blood results from interaction of knob proteins with CAR.

A key difference between the results of these two studies was the site of accumulation of radioactivity in mice after injection of radiolabeled CAR-binding knob proteins. While the bulk of radioactivity accumulated in the livers of mice injected with \(^{99m}\)Tc-labeled Ad5 knob, only minor accumulations of radioactivity were detected in the livers of mice injected with \(^{131}\)I-labeled Ad12 knob, and no accumulation over background was detected in mice injected with iodinated wild-type or C428N Ad2 knob. Since knob proteins from all three serotypes bind to CAR with similarly high affinities and have significant structural and sequence homologies, the different biodistributions observed in the two studies likely result from different properties of the radionuclides used for protein labeling. Technetium-\(^{99m}\)m is a radiometal that can bind either directly to protein sulfhydryl groups or indirectly to chelating groups that are incorporated into the protein by chemical or genetic modification (9, 14). Ad5 knob was labeled with \(^{99m}\)Tc by an indirect method using the chelator succinimidyl 6-hydrazinonicotinate (HYNIC), which was incorporated into knob protein by chemical modification (51). Catabolism of \(^{99m}\)Tc-HYNIC-labeled proteins in hepatocyte microsomes has been reported in other studies (34) to generate a stable radiometabolite, \(^{99m}\)Tc-(HYNIC-lysine)(tricine)(tricine), which is eliminated from the liver only very slowly. Because these stable radiometabolites are retained in the liver, it is not possible to determine from tissue counting or in vivo imaging whether radioactivity corresponds to intact radiolabeled knob protein or to products of knob degradation.

Proteins can be labeled with radioiodine either directly on tyrosine residues, as in the Iodobead method, or by attachment of preformed iodotyrosine to lysine epsilon amino groups, as in the Bolton-Hunter method (6). However, the iodine-tyrosine bond is labile to hydrolysis by deiodinase enzymes, which are particularly abundant in hepatocyte microsomes (30, 38). In contrast to the intracellular sequestration of \(^{99m}\)Tc-labeled metabolites, free iodine released from labeled proteins by deiodinase activity readily diffuses out of the liver and enters the bloodstream, where it is taken up by Na/I symporters in the gastric mucosa and transported into the gut lumen (23). In control experiments, we injected mice with free \(^{131}\)I and observed rapid uptake of radioactivity in the gut (data not shown), in good agreement with published results (23). The limited accumulation of radioactivity in the livers of mice injected with \(^{131}\)I-labeled knob proteins therefore likely results from efficient deiodination of knob protein in the liver and diffusion of the resultant free iodine into the bloodstream. Consistent with this model, an earlier study showed that \(^{99m}\)Tc-labeled low-density lipoprotein particles were trapped in the liver whereas \(^{125}\)I-labeled low-density lipoprotein particles were deiodinated in the liver, with subsequent accumulation of free iodine in the intestine (41). In mice injected with \(^{131}\)I-labeled Ad2 or Ad12 knob mutants that were unable to interact with CAR, radioactivity was retained in the blood circulation for a prolonged period and did not accumulate in the stomach, indicating that knob protein is not exposed to significant levels of deiodinase activity in the circulation.

While the fate of the knob protein itself cannot be directly determined from our results, it is likely that proteolytic degradation of knob protein would accompany deiodination in hepatocyte microsomes. The slight accumulation of radioactivity in the livers and kidneys of mice injected with \(^{131}\)I-labeled Ad12 knob (Fig. 6B) that was not seen for Ad2 knob suggests that intracellular uptake and/or deiodination may occur at a lower rate for Ad12 knob than for Ad2 knob. Radioactivity in the kidneys of these mice (Fig. 6B) might correspond to peptide degradation products of knob generated in the liver that still retain the radiiodine label.

A role for CAR in protein uptake and metabolism in the liver is unexpected, based on the current understanding of CAR physiology as a tight junction membrane protein (3). While CAR mediates high-affinity attachment of adenovirus particles to the cell plasma membrane, rapid endocytosis of virus-CAR complexes by epithelial cells typically is promoted by integrin coreceptors that interact with an Arg-Gly-Asp (RGD) motif on the viral penton base subunits (2, 47). Ad2 mutants lacking functional penton base RGD motifs are infectious, but entry of these mutant virus particles into adherent cultured cells is delayed by several hours relative to that of wild-type virus (2). The knob domain does not have an RGD motif and is not known to interact with integrins; therefore, CAR alone may be sufficient for endocytosis of knob-CAR complexes from the surfaces of mouse hepatocytes in vivo. The absence of significant accumulation of radioactivity in the liver suggests that once bound to CAR molecules on the hepatocyte surface, knob is rapidly delivered to an intracellular compartment where it is exposed to deiodinase activity. Consistent with this model of integrin-independent uptake of knob, an earlier study showed that adenovirus-CAR complexes on rat hepatocytes can be internalized by an integrin-independent pathway (18).

In polarized epithelial cells, CAR is localized to tight junctions, where it functions as a homotypic cell adhesion molecule (7, 20, 45). CAR-mediated homotypic cell adhesion is likely to result from dimerization of the distal extracellular domain (D1) of CAR molecules on adjacent cells (43). The surface of the CAR D1 domain that forms the homodimer interface is the same surface that is recognized by the knob domain (5, 43). CAR molecules in the junctional complex of polarized epithelial cells are relatively inaccessible to ligands applied to either the apical or the basal surface of the epithelial-cell sheet (7). If CAR is also sequestered in the junctional complex of hepatocytes, then binding of knob to these receptors would likely be inefficient. However, the mouse liver was estimated to have 17,000 binding sites per hepatocyte for \(^{99m}\)Tc-labeled Ad5 knob, and these sites were fully saturated with \(^{99m}\)Tc-labeled Ad5 knob after circulation of knob in the blood for only 1 min (51). CAR molecules on hepatocytes therefore extract knob from the blood with high efficiency, suggesting that at least a subset of CAR molecules may be localized on the hepatocyte sinusoidal (basal) surface with their D1 domains unoccupied and available for binding to knob. CAR protein and mRNA levels are particularly abundant in the rodent liver relative to levels in other rodent tissues (39, 40), possibly accounting for localization of a fraction of CAR to the hepatocyte sinusoidal surface. Alternatively, localization of CAR to distinct membrane subdomains could result from modifications to the CAR cytoplasmic tail, as suggested by a recent study (1).
The present study and the earlier work with 99mTc-labeled knob (51) demonstrate that the recombinant knob domain is a highly effective reagent for targeting CAR molecules in vivo. The knob protein scaffold has several features that might be exploited for general applications in imaging and molecular recognition. knob trimers are large enough (60 kDa) to avoid rapid renal clearance, as indicated by the prolonged circulation of knob mutants in the mouse bloodstream and the delayed clearance of iodinated wild-type knob by coinjection of excess unlabeled knob, yet they are small relative to most antibody-based targeting reagents and thus should have good penetration into tumors or peripheral tissues. Although the binding specificity of knob domains derived from natural adenovirus serotypes is restricted to CAR and a limited number of alternate receptors (4, 13, 32, 37, 39), the contact residues that determine binding specificity are localized to surface loops that are highly tolerant of sequence variation (5, 36). Therefore, it should be possible to generate knob proteins with novel binding specificities by altering the sequence and length of the specificity-determining loops. Avidity effects resulting from trivalent binding increase the overall affinity of knob for target molecules (28), which could potentially circumvent the need to develop individual binding sites with very high affinities. Recombinant knob domains from several adenovirus serotypes fold correctly and assemble into active trimeric species during fold correctly and assemble into active trimeric species during 1320

REFERENCES

As shown above, this work supported by Public Health Service grant AI-36251 (to P.F.) from the National Institute of Allergy and Infectious Diseases and by a grant from the Medical Sciences Division of the U.S. Department of Energy Office of Biological and Environmental Research.

BIODISTRIBUTION OFIODINATED KNOB 6437

adenovirus serotypes from subgroups A, C, D, E, and F. J. Virol. 72:7909–7915.

