Blocking Immune Evasion as a Novel Approach for Prevention and Treatment of Herpes Simplex Virus Infection

Kara A. Judson,1† John M. Lubinski,1 Ming Jiang,1 Yueh Chang,1 Roselyn J. Eisenberg,2 Gary H. Cohen,3 and Harvey M. Friedman1*

Infectious Disease Division, Department of Medicine, School of Medicine,1 Department of Pathobiology, School of Veterinary Medicine,2 and Department of Microbiology, School of Dental Medicine,3 University of Pennsylvania, Philadelphia, Pennsylvania 19104-6073

Received 1 July 2003/Accepted 27 August 2003

Many microorganisms encode immune evasion molecules to escape host defenses. Herpes simplex virus type 1 glycoprotein gC is an immunoevasin that inhibits complement activation by binding complement C3b. gC is expressed on the virus envelope and infected cell surface, which makes gC potentially accessible to blocking antibodies. Mice passively immunized with gC monoclonal antibodies prior to infection were protected against herpes simplex virus challenge only if the gC antibodies blocked C3b binding. Mice treated 1 or 2 days postinfection with gC monoclonal antibodies that block C3b binding had less severe disease than control mice treated with nonimmune immunoglobulin G (IgG). Mice immunized with gC protein produced antibodies that blocked C3b binding to gC. Immunized mice were significantly protected against challenge by wild-type virus, but not against a gC mutant virus lacking the C3b binding domain, suggesting that protection was mediated by antibodies that target the gC immune evasion domain. IgG and complement from subjects immunized with an experimental herpes simplex virus glycoprotein gD vaccine neutralized far more mutant virus defective in immune evasion than wild-type virus, supporting the importance of immune evasion molecules in reducing vaccine potency. These results suggest that it is possible to block immune evasion domains on herpes simplex virus and that this approach has therapeutic potential and may enhance vaccine efficacy.
Sixteen to 20 h later, mice were infected with purified HSV-1 WT virus by adding anesthetized, and the 267, or 140 or nonimmune murine IgG (Sigma, St. Louis, Mo.). The mice were negative for HSV-1 and -2 served as the source of complement. Vaccine IgG was from human serum of subjects immunized with an experimental HSV-2 gD passively immunized intraperitoneally (i.p.) with 100, 500, or 1000 µg of nonimmune murine IgG.

We previously reported that the gC domain that binds C3b is a virulence factor in mice and is more potent than the C5/P domain (17). Therefore, we evaluated whether blocking the C3b domain by using MAbs would modify virulence. Mice were passively immunized with gC MAb 1C8 or 140, which blocks gC-C3b interaction, or with MAb 267, which fails to block C3b binding. We postulated that the blocking MAbs 1C8 and 140 would protect the mice because they prevent complement inactivation by gC, which should enhance complement activity in host defense.

Passive immunization of mice with gC MAbs. We previously reported that the gC domain that binds C3b is a virulence factor in mice and is more potent than the C5/P domain (17). We focused our efforts on blocking immune evasion mediated by HSV-1 gC. Flow cytometry assays were performed to identify murine MAbs that bind to different domains on gC expressed at the cell surface of infected cells. MAbs were incubated with cells infected with WT virus, a mutant virus lacking the C3b binding domain, or a mutant virus lacking the amino-terminal C5 and properdin domain (Fig. 2A) (12, 17). MAbs 1C8 and 140 failed to bind to the mutant virus lacking the C3b domain. In contrast, MAb 267 bound to this virus, although at reduced levels compared with WT virus, suggesting that MAb 267 recognizes a different domain on gC than MAbs 1C8 or 140 and that MAb 267 interacts little, if at all, with the C3b binding domain.

Passive immunization of mice with gC MAbs. We previously reported that the gC domain that binds C3b is a virulence factor in mice and is more potent than the C5/P domain (17). Therefore, we evaluated whether blocking the C3b domain by using MAbs would modify virulence. Mice were passively immunized with gC MAb 1C8 or 140, which blocks gC-C3b interaction, or with MAb 267, which fails to block C3b binding. We postulated that the blocking MAbs 1C8 and 140 would protect the mice because they prevent complement inactivation by gC, which should enhance complement activity in host defense.

Mice were injected i.p. with 100 µg of IgG and infected the next day with 5 × 10^4 PFU of WT virus. The dose of 100 µg was chosen based on preliminary experiments that showed no significant difference in protection between 100 and 500 µg. In this model, disease occurs first at the inoculation site, and virus then spreads along nerves to spinal ganglia, where virus infects additional neurons and returns to the skin along nerves to cause zosteriform disease (19, 24). None of the antibodies significantly modified infection at the inoculation site; however, zosteriform disease was significantly reduced in mice that received MAb 1C8 or 140 (Fig. 3A, left panel). To further

RESULTS

Murine MAbs can block C3b binding to gC. We focused our studies on blocking immune evasion mediated by HSV-1 gC. Flow cytometry assays were performed to identify murine MAbs that bind to different domains on gC expressed at the cell surface of infected cells. MAbs were incubated with cells infected with WT virus, a mutant virus lacking the C3b binding domain, or a mutant virus lacking the amino-terminal C5 and properdin domain (Fig. 2A) (12, 17). MAbs 1C8 and 140 failed to bind to the mutant virus lacking the C3b domain. In contrast, MAb 267 bound to this virus, although at reduced levels compared with WT virus, suggesting that MAb 267 recognizes a different domain on gC than MAbs 1C8 or 140 and that MAb 267 interacts little, if at all, with the C3b binding domain.

Passive immunization of mice with gC MAbs. We previously reported that the gC domain that binds C3b is a virulence factor in mice and is more potent than the C5/P domain (17). Therefore, we evaluated whether blocking the C3b domain by using MAbs would modify virulence. Mice were passively immunized with gC MAb 1C8 or 140, which blocks gC-C3b interaction, or with MAb 267, which fails to block C3b binding. We postulated that the blocking MAbs 1C8 and 140 would protect the mice because they prevent complement inactivation by gC, which should enhance complement activity in host defense.
define the role of complement in protection, C3 knockout mice were passively immunized with gC MAb 1C8 or with control antibody MAb 267 and infected the next day with WT virus at 5×10^4 PFU. MAb 1C8 offered no protection in these mice (Fig. 3A, right panel), supporting the hypothesis that antibodies that bind to the gC complement-binding domain protect in a complement-dependent fashion.

MAb 1C8 modifies disease severity when administered postinfection. BALB/c mice were infected with WT virus at 5×10^4 PFU and passively immunized 1, 2, or 3 days post-virus inoculation with 1 mg of MAb 1C8 or nonimmune IgG as a control. MAb 1C8 afforded significantly greater protection than nonimmune IgG on days 1 and 2 (Fig. 3B, left and middle panels, respectively), but not on day 3 (Fig. 3B, right panel). When the same experiments were repeated with a lower MAb dose (100 μg/ml), differences were significant on day 1 only (results not shown). These findings indicate that antibody can modify disease even when administered 2 days after infection.

Active immunization of mice with bac-gC457t. Mice were immunized i.p. three times at 2-week intervals with bac-gC457t, a gC protein truncated prior to the transmembrane domain and purified from supernatant fluids of baculovirus-infected cells (26). Mice were immunized with adjuvant alone as a control. Mice were challenged with 5×10^5 PFU of WT virus or gC mutant virus, NS-gC C3, defective in C3b binding. We postulated that if immunization protects because antibodies bind to and block gC evasion domains, then the vaccine should defend against challenge by WT virus, but not gC mutant virus lacking these domains. The results support our hypothesis. Compared with mock-immunized controls, bac-gC457t protected against challenge with WT (Fig. 4, left panel), while no differences were detected after challenge with gC mutant virus (Fig. 4, right panel). As previously reported, disease scores were lower in mice infected with the gC mutant virus than in those infected with WT virus because the mutant virus is more susceptible to complement-mediated attack (17). These experiments suggest that gC immunization protects against WT virus challenge, but not against challenge with a gC mutant virus that is defective in C3b binding.

To further evaluate whether protection is related to blocking gC evasion domains, IgG was purified from gC-immunized mice and tested for rosette inhibition. IgG inhibited C3b rosettes in a dose-dependent fashion, indicating that bac-gC457t-induced antibodies block gC evasion domains (Fig. 5A). One possibility for the greater effect of immunization against WT virus is that antibodies produced may be primarily directed against the C3b binding domain that is deleted in the gC mutant virus. Therefore, neutralizing activity of bac-gC457t-induced antibodies was compared against WT virus or gC mutant virus. The antibodies had little neutralizing activity against either virus (Fig. 5B), suggesting that results shown in Fig. 4 cannot be explained by greater neutralization of antibody against WT than gC mutant virus. Rather, the results are consistent with the hypothesis that antibodies are more effective at inhibiting WT virus because they block gC evasion domains.

Passive immunization experiments were performed to evaluate vaccine-induced antibodies independent of T-cell responses. IgG was purified from immunized mice and transferred into naïve mice that were then challenged with 5×10^4
PFU of WT virus. The IgG protected against challenge (Fig. 5C), supporting the role of gC antibodies in mediating this effect.

Magnitude of protection provided by active and passive immunization. Experiments were performed to define the magnitude of protection provided by gC immunization or passive transfer of gC antibody. Mice were infected with WT virus at titers ranging from 5×10^3 to 5×10^5 PFU. These mice received no treatments (no passive antibodies or immunization) prior to infection to establish disease scores in the absence of interventions. For comparison, zosteriform disease scores were determined in mice passively immunized with MAb 1C8 or immunized with bac-gC457t and infected with WT virus at 5×10^5 PFU (Fig. 6). The immunized mice had disease scores similar to those infected with 5×10^3 PFU without interventions. Therefore, immunization with MAb 1C8 and gC reduced zosteriform disease to a degree equivalent to decreasing the dose of inoculated virus by 100-fold.

Neutralization assays using human gD vaccine sera. We previously reported HSV-1 neutralization studies using human IgG pooled from thousands of normal donors. The IgG was added to human complement and tested in a neutralization assay against a gC mutant virus defective in C3b binding, a gE mutant virus defective in IgG Fc binding, or a gC/gE double-mutant virus defective in both C3b and IgG Fc binding. Complement increased the neutralizing activity of antibody against the gC or gE mutant virus compared with WT virus; however, the most impressive result was a marked increase in comple-

FIG. 3. Passive immunization protection studies in the murine flank model. (A) (Left panel) Five-to-6-week-old BALB/c females were passively immunized with 100 µg of nonimmune murine IgG (▲; n = 6), MAb 267 (■; n = 8) (anti-gC MAb that binds gC but does not block C3b binding), MAb 140 (○; n = 9), or MAb 1C8 (□; n = 8) (anti-gC MABs that bind gC and block C3b binding). Sixteen to 20 h later, mice were infected with 5×10^3 PFU. $P < 0.01$ for comparison of scores for MAb 1C8 and 267 on days 5 to 7. $P < 0.01$ for comparison of scores for MAb 140 and 267 on days 5 and 6, and $P = 0.02$ for comparison on day 7. (Right panel) C3 knockout mice were passively immunized with nonimmune murine IgG (▲; n = 6), MAb 267 (■; n = 8), or MAb 1C8 (□; n = 8) and challenged with WT virus at 5×10^3 PFU. (B) Protection against disease by passive antibody transfer 1 to 3 days postinfection. BALB/c mice were infected with WT virus at 5×10^3 PFU and passively immunized with 1 mg of nonimmune murine IgG (▲) or MAb 1C8 (□). (Left panel) Passive transfer 1 day post-virus infection with nonimmune IgG (n = 5) or MAb 1C8 (n = 10). $P = 0.01$ for comparison on days 5 to 7. (Middle panel) Passive transfer 2 days postinfection with nonimmune IgG (n = 5) or MAb 1C8 (n = 7). $P = 0.02$ for comparison on day 5 and $P = 0.03$ for days 6 and 7. (Right panel) Passive transfer 3 days postinfection with nonimmune IgG (n = 5) or MAb 1C8 (n = 7). Error bars represent ± standard error.

FIG. 4. Immunization with bac-gC457t and challenge of mice with WT or gC mutant virus. (Left) BALB/c mice were mock immunized (■; n = 7) or injected with bac-gC457t (□; n = 11) and challenged with WT virus at 5×10^5 PFU. $P < 0.001$ for comparison of mock versus gC-bac457t immunized on days 5 to 7. (Right) Mice were mock immunized (■; n = 9) or immunized with bac-gC457t (□; n = 12) and challenged with gC mutant virus NS-gCΔC3 at 5×10^5 PFU. No significant differences were detected between groups.
ment-enhanced neutralization of the gC/gE double-mutant virus compared with WT virus (18).

As an extension of these studies, we evaluated whether gC and gE immunoevasins modify antibody and C neutralization of HSV-1 when the source of antibody was IgG purified from serum of subjects vaccinated with an experimental HSV-2 glycoprotein gD vaccine (25). As a control, IgG was purified from placebo recipients who received adjuvant alone. All vaccine and placebo recipients were seronegative to HSV-1 and -2 prior to vaccination. Vaccine IgG was used at a concentration 12.5 to 50 μg/ml, which neutralized virus 50% (0.3 log₁₀) in the absence of complement. These IgG concentrations were selected because antibody binds to virus; however, neutralizing activity is modest enough that if complement adds to the effect, it can be measured in the assay (complement-enhanced antibody neutralization assay) (18). IgG from subjects receiving the placebo vaccine was also used at concentrations of 12.5 to 50 μg/ml. Vaccine or placebo IgG was combined with 10% serum from a donor seronegative for HSV-1 and -2, which served as the source of complement, and tested for its ability to neutralize WT HSV-1 strain NS or a mutant virus defective in both gC-mediated C₃b binding and gE-mediated IgG Fc binding (NS-gCΔC3,gE339) (18). The combination of immune IgG and complement neutralized infectivity of the gC/gE mutant virus 2.2 log₁₀ compared with phosphate-buffered saline (PBS). In contrast, immune IgG and complement had only a minimal effect (0.3 log₁₀) on WT virus (Fig. 7, left panel). Complement and IgG from placebo subjects failed to neutralize either virus (Fig. 7, right panel). The protection provided by gC and gE immunoevasins was not observed with WT virus challenge on day 7 (P = 0.02). Error bars represent ± standard error.

FIG. 5. Characterization of antibodies to bac-gC457t produced in mice. (A) Rosette inhibition by murine antibodies to bac-gC457t. Cells were infected with WT virus and incubated with IgG purified from mice immunized with bac-gC457t. The percentage of cells that bound ≥4 erythrocytes was determined. Results are the average ± standard error of IgG from two immunized mice. (B) Neutralization of WT and gC mutant virus by murine antibodies to bac-gC457t. WT or gC mutant virus NS-gCΔC3 (labeled ΔgC) was incubated with PBS (C) or 250 μg of IgG per ml purified from bac-gC457t-immunized mice (D). Results are the average ± standard error of IgG from two mice. No significant differences were detected in virus neutralization. (C) Passive transfer of antibodies to bac-gC457t protects mice against WT virus challenge. One day prior to infection with 5 × 10⁵ PFU of WT virus, mice were inoculated with IgG pooled from eight mice that had been immunized with bac-gC457t (●; n = 5) or with nonimmune murine IgG (△; n = 5). Antibodies to bac-gC457t provide significant protection against WT virus challenge on day 7 (P = 0.02). Error bars represent ± standard error.
against antibody and complement is consistent with the model shown in Fig. 1. These results support the concept that blocking evasion domains on WT virus may improve efficacy of an HSV vaccine.

DISCUSSION

HSV-1 gC and gE are immunoevasins that contribute to virulence (17, 18, 21). Studies using human gD2 vaccine sera demonstrate that HSV-1 immunoevasins can have a dramatic impact on neutralizing activity of vaccine sera, which is consistent with our previous findings with pooled human IgG that showed gC and gE together are more potent immunoevasins than either alone (18). In this study, we evaluated blocking the gC C3b binding domain; however, added benefit seems likely if the gC C5/P and gE IgG Fc domains are also blocked (17, 18).

Unlike many immunoevasins that function intracellularly, gC and gE are expressed on the virus and the infected cell surface, making them potentially accessible to blocking antibodies. Studies with human and simian immunodeficiency viruses suggest that viral glycoprotein domains important in pathogenesis may remain hidden from antibodies (16, 23). Whether gC and gE evasion domains will be accessible to blocking antibodies during HSV infection in humans is currently unknown. However, in the murine zosteriform model, blocking antibodies produced during immunization reduced WT virus virulence by approximately 100-fold, suggesting that blocking evasion domains is an approach worth pursuing.

gC passive antibody therapy and gC immunization had a greater effect on zosteriform disease than on inoculation site disease. These results suggest that it may be difficult to modify early HSV-1 events, such as inoculation site disease. Passive antibody therapy was effective even when given 2 days after infection, which is consistent with the conclusion that gC evasion has a greater effect on later events. Additional studies, such as analyzing viral load in ganglia, will be required to determine whether antibody therapy modifies the ability of virus to reach the ganglia or affects virus transport from ganglia back to skin. Our prior studies showed that gC-mediated immune evasion had little impact on disease scores until 5 days postinfection, which is consistent with a role for complement relatively late in acute infection (17). One explanation for these observations may be that complement concentrations may be too low at infection sites until virus-induced tissue injury develops. Another consideration is that complement serves as a bridge between innate and acquired immunity and that it takes several days to mount acquired immune responses (2, 3, 5, 30).

The results of several experiments support the conclusion that gC antibodies prevent disease because they block C3b binding. First, both MAbs that blocked C3b binding to virus in vitro were more protective in vivo than a MAb that failed to block this interaction. Second, mice that were immunized with bac-gC457t were protected from zosteriform disease caused by WT virus but not from disease caused by a gC mutant virus defective in C3b binding. Third, the gC MAb 1C8 failed to protect C3 knockout mice from zosteriform disease, suggesting that protection is complement dependent. This result also suggests that protection is not mediated by antibody-dependent cellular cytotoxicity, an immune function mediated by mononuclear cells, which are intact in C3 knockout mice. Fourth, the MAbs or bac-gC457t-induced antibodies are not capable of neutralizing HSV-1 in the absence of complement; therefore, differences cannot be ascribed to antibody neutralization alone. These MAbs are only weakly neutralizing even in the presence of complement and only become highly neutralizing if the gC C5/P domain is deleted (H. Friedman, unpublished observation). These results suggest that antibodies are likely mediating protection by interacting with infected cells rather than by neutralizing cell-free virus. Fifth, passive transfer of bac-gC457t-induced antibodies protected against disease, and this antibody blocked C3b binding. Protection was at reduced levels compared with active immunization with bac-gC457t, suggesting that T-cell responses may contribute to protection.
provided by gC immunization. Alternatively, the concentration of IgG used in passive transfer experiments may have been low. Taken together, the evidence strongly supports the conclusion that blocking gC evasion domains reduces virulence of HSV-1.

An important consideration is whether antibodies that block immune evasion can be used for treatment of serious HSV infections or whether immune evasion proteins can be included as components of an HSV vaccine. HSVencephalitis and neonatal infection are life-threatening diseases (14, 31). Antibody therapy that prevents immune evasion may improve host defense and be effective when given in combination with antiviral drugs. For vaccine development, blocking immune evasion can be used for treatment of serious HSV infections or whether immune evasion proteins can be included as components of an HSV vaccine. HSV encephalitis is a serious and potentially fatal disease, and neonatal infection is a life-threatening condition. The goal is to induce effective immune responses while also blocking immune evasion proteins and minimizing toxicity. For vaccine development, blocking immune evasion is an appealing concept, not as the sole antigen, but if used in combination with potent B- and T-cell immunogens.

The goal is to induce effective immune responses while also preventing the pathogen from evading those responses.

ACKNOWLEDGMENTS

K.A.J. and J.M.L. contributed equally to this study. J. Moorhead, K. Tyler, and L. Pizer from the University of Colorado kindly provided MAbs 140 and 267.

This work was supported in part by NIH Public Health Service grants RO1 HL28220, AI13063, and DE14152 from the National Heart, Lung, and Blood Institute, the National Institute of Allergy and Infectious Diseases, and the National Institute of Dental and Craniofacial Research.

REFERENCES