CpG DNA Induces Protective Antiviral Immune Responses in Atlantic Salmon (Salmo salar L.)

Jorunn B. Jørgensen,* Lill-Heidi Johansen, Kari Steiro, and Audny Johansen

Fiskeriforskning, Norwegian Institute of Fisheries and Aquaculture, N-9291 Tromsø, Norway

Received 13 March 2003/Accepted 28 July 2003

Oligodeoxynucleotides (ODN) containing unmethylated CpG dinucleotides within specific sequence contexts (CpG motifs) are detected, like bacterial or viral DNA, as a danger signal by the vertebrate immune system. CpG ODN show promise as vaccine adjuvants and immunoprotective agents in animal models. Here we report that pretreatment with CpG ODN in animals induces nonspecific protection against viral infection. A panel of different synthetic CpG ODN was tested for the in vitro effects in Atlantic salmon (Salmo salar L.) leukocytes. The ODN were tested for their capacity to stimulate proliferation of peripheral blood leukocytes and to induce production of interferon-like factors in head kidney leukocytes. These studies revealed that the sequence and number of the CpG motifs as well as the lengths of the ODN contribute to their stimulatory activity. ODN with the 6-mer CpG motif (5′-GTCGTT-3′) showed the highest stimulatory activity and were shown to induce protection against infectious pancreatic necrosis virus when injected in Atlantic salmon. Expression of the mRNA, as an indicator of alpha/beta interferon induction, was induced in the CpG-injected fish. These results suggest that CpG DNA in fish induces early, nonspecific antiviral protection.

Unmethylated cytosine-guanidine dinucleotides within the context of certain flanking sequences (CpG motifs), as originally defined for bacterial DNA, have diverse stimulatory effects on the innate and adaptive immune systems (reviewed in reference 31). In mammals several of these effects contribute to strong Th1-type adjuvant activity for antigen-specific responses. CpG DNA triggers B cells to proliferate and secrete immunoglobulins and cytokines, both of which contribute to stronger humoral responses (30, 34). CpG DNA also directly activates monocytes, macrophages, and dendritic cells to secrete various Th1 cytokines (55–57), which in turn activate T and NK cells to secrete a broad range of cytokines (2, 6, 60). The recognition of CpG motifs by the innate immune system requires engagement of Toll-like receptor 9, which induces cell signaling and subsequently triggers an immune response (17). Several studies have documented the potent adjuvant activity of CpG DNA in vaccines with various antigens, including viral antigens (8, 19, 20, 36, 47), and with DNA vaccines (48, 53). Additionally, CpG DNA has been shown to provide nonspecific protection and induce resistance to lethal challenges with the intracellular bacteria Listeria monocytogenes (33) and Francisella tularensis (11). CpG oligodeoxynucleotides (ODN) have been shown to be locally protective against herpes simplex virus type 2 in mice (14), but there are no published reports of the systemic protective effects of CpG ODN against viral infections in animals.

Recently published studies have shown that CpG DNA activates fish leukocytes. Synthetic ODN containing CpG motifs induce production of interferon (IFN)-like cytokine activity in salmonid leukocytes (24, 25), stimulate interleukin-1 production in rainbow trout (Oncorhyncus mykiss) macrophages (25), and activate nonspecific cytotoxic cells from channel catfish (Ictalurus punctatus) (46). The strong activating effect of CpG DNA on fish leukocytes suggests the use of CpG ODN as an immunostimulant in fish.

The economically important pathogen infectious pancreatic necrosis virus (IPNV), an aquabirnavirus, was chosen as the model virus, because its replication has previously been shown to be inhibited by IFN (22, 41). IPNV causes a serious disease, acute infectious pancreatic necrosis (IPN), in salmonids (54). IPNV has a naked capsid that encloses two segments, A and B, of double-stranded RNA (9). Segment A encodes three known gene products within one large open reading frame, including the two major capsid proteins VP2 and VP3 (9). For salmonids, mortality due to IPNV is generally considered to be a fry disease, but natural outbreaks of IPN in older fish are also reported (54). Considerable efforts have been made to develop traditional vaccines based on killed virus as well as vaccines based on recombinant DNA technology. Recombinant segment A and VP2 have been shown to induce protective immunity when injected in fish (7, 42). A successful prophylactic strategy to combat viral diseases like IPN in fish farming relies both on innate immune responses, like cytokines and natural killer cells, and on specific responses, like antibodies and cytotoxic T cells.

In the present study, we tested whether defense mechanisms against viral infections could be up-regulated by in vivo treatment of fish with CpG ODN. The optimal CpG motif which activates mouse or rabbit immune cells has the general formula purine-purine-CG-pyrimidine-pyrimidine, and the best CpG motif is found to be GACGTT (34, 49), while for activating human and primate cells, the optimal motif is GTCGTT (13, 15, 16, 32). Since fish cells may respond to CpG motifs different from those of previously tested animals, a panel of synthetic ODN was examined for their ability to stimulate Atlantic salmon leukocytes in vitro. The ODN giving the strongest in vitro stimulatory effect was injected into fish, and IPNV resistance was tested. Furthermore, we tested whether this resis-
tance correlated with expression of the Mx gene, which is suggested to be a marker for IFN-α/β (45).

MATERIALS AND METHODS

Materials. Phosphothioate-modified ODN were purchased from MedProbe (Oslo, Norway). The ODN sequences used are provided below (see Fig. 2). The ODN were dissolved in TE buffer (10 mM Tris, 1 mM EDTA [pH 8]). The synthetic double-stranded RNA poly(I-C) was purchased from Pharmacia Bio-tech; lipopolysaccharide (LPS; from Escherichia coli O111:B4), bacterial DNA (from E. coli strain B), and calf thymus DNA were from Sigma.

Fish for in vitro studies. Two-year-old nonvaccinated Atlantic salmon, Salmo salar L strain NLA (Norwegian Salmon Breeding, Samnalsalra, Norway), weighing approximately 0.5 kg, were obtained from the Norwegian Institute of Fisheries and Aquaculture (Aquaculture Research Station, Tromsø, Norway). The fish were kept at 10°C in tanks supplied with running fresh, filtered water from a local river and fed commercial dry feed (Skretting, Stavanger, Norway).

Proliferation. Atlantic salmon peripheral blood leukocytes (PBL) from six fish were used for cell proliferation studies, and the cells were isolated as previously described (50). Aliquots (100 µl) were used for cell proliferation studies, and the cells were isolated as previously described (51), with the reciprocal dilution of leukocyte supernatant per milliliter at which 50% protection against virus infection was determined as the reciprocal dilution of leukocyte supernatant per milliliter at which 50% protection against virus infection was obtained.

TREATMENT OF ATLANTIC SALMON WITH ODN AND POLY(I-C). Nonvaccinated Atlantic salmon, Salmo salar L strain NLA, reared in a hatchery at the Aquaculture Research Station, Tromsø, Norway, and weighing approximately 50 g, were used in two experiments. The fish were kept in tanks supplied with running fresh water at 10°C, exposed to continuous light, and fed commercial dry feed at the onset of the experiments. Head kidney material from 20 fish was tested for the presence of carrier IPNV as described by Hetrick (18) and found to be virus negative prior to treatments and challenges. Treatments were done with fish in the posterior stage of the exponential phase of amplification. Two-year-old nonvaccinated Atlantic salmon, Salmo salar L strain NLA, weighing approximately 0.5 kg, were used in two experiments. 0.5 kg, were used in two experiments. Two-year-old nonvaccinated Atlantic salmon, Salmo salar L strain NLA, weighing approximately 0.5 kg, were used in two experiments. 0.5 kg, were used in two experiments. Two-year-old nonvaccinated Atlantic salmon, Salmo salar L strain NLA, weighing approximately 0.5 kg, were used in two experiments.

RESULTS

Specific ODN induce proliferation of Atlantic salmon leukocytes. In initial experiments, the mitogenic effects on Atlantic salmon PBL were observed as increased proliferation of IPNV-infected cells treated with ODN. The experiments were performed with fish from two experiments. The ODN were dissolved in TE buffer (10 mM Tris, 1 mM EDTA [pH 8]). The synthetic double-stranded RNA poly(I-C) was purchased from Pharmacia Bio-tech; lipopolysaccharide (LPS; from Escherichia coli O111:B4), bacterial DNA (from E. coli strain B), and calf thymus DNA were from Sigma.
dent proliferation (Fig. 1a), whereas the non-CpG control DNA was not stimulatory. ODN 1681 at 8 μM had a significantly better stimulatory (P < 0.01) effect for fish PBL than did ODN 1668 (Fig. 1b). Neither calf thymus DNA nor bacterial DNA at concentrations of 12.5 and 50 μg ml⁻¹ stimulated proliferation of Atlantic salmon blood leukocytes. The stimulatory effects of LPS (at 10 and 50 μg ml⁻¹) were comparable to those of CpG DNA (Fig. 1b).

Screening of different ODN for the ability to stimulate IFN production and cell proliferation in Atlantic salmon leukocytes. Previous studies have tested ODN 1668 and 1670 with the murine motif (GA/AA)CGTT, and these ODN stimulated IFN-like cytokine activity in Atlantic salmon leukocytes (24, 25). In the present study a panel of different ODN was tested for both PBL proliferation and induction of IFN-like activity in HK leukocytes.

HK leukocytes were incubated with CpG ODN of various overall lengths and containing different combinations and numbers of CpG motifs. The data presented in Fig. 2 confirm that CpG motifs are the essential elements in ODN that activate leukocytes in fish, since elements in which the CpG are inverted to GpC lose stimulatory activity (for example, compare ODN 1720 and 1740 to ODN 1668 and 1681, respectively). In ODN 1670 there is a central core element, AAGCTT, but additionally there is one distal CG in the 5’ end and two distal CGs in the 3’ end. When the bases CG are inverted to GC, a reduction in stimulation is seen (Fig. 2, compare ODN 1670 to ODN 1682, 1671, 1673, and 1672). When the lengths of the ODN were reduced below 13 bp (compare ODN 1670 to 1675 and ODN 1660 to 1659), they lost their stimulatory effect. ODN with lengths of 16 to 17 bp showed a reduction in stimulatory capacity compared to the capacity of ODN with lengths of 20 to 22 bp (compare ODN 1670 to 1679).

Optimal activation of Atlantic salmon leukocytes, measured by both antiviral activity and proliferation, was seen with ODN 1669 and 1681 containing the 6-mer core element GTCGTT. When these ODN were compared to ODN with similar lengths and flanking regions but different 6-mer core motifs, reductions in stimulatory capacities were seen (Fig. 2, compare ODN 1681 to ODN 1669, 1670, 1680, 1674 and 1683 or ODN 1669 to ODN 1651, 1652, 1660, and 1668). The motif GTCGTT (present in ODN 1669 and 1681), previously reported to be

FIG. 1. Proliferation of Atlantic salmon PBL stimulated with CpG ODN, non-CpG ODN, calf thymus DNA, and bacterial LPS. Atlantic salmon PBL (8 × 10⁶ cells/well) were used for cell proliferation studies. The cells were cultured with various concentrations of the stimulants for 6 days, and proliferation was assessed by measuring [³H]thymidine incorporation. The data are reported as the mean counts per minute ± standard deviation (SD) of the mean for six fish or as the stimulation index ± SD and are representative of at least two independent experiments. (a) The results are presented in a semilogarithmic scale; the closed symbols represent cultures stimulated with CpG ODN 1681, and the open symbols represent cultures stimulated with control GpC ODN. (b) The stimulation with ODN 1681 and 1668 (at 2 and 8 μM [i.e., 12 and 48 μg ml⁻¹, respectively]) is compared with those with non-CpG, bacterial and calf thymus DNA (at 12.5 and 50 μg ml⁻¹), and LPS (at 10 and 50 μg ml⁻¹). **, statistical significance (P < 0.01) in comparison to the control.
optimal for human leukocytes (15), has a better stimulatory effect in fish than do the optimal murine motifs (GA/AA)C GTT.

Resistance to IPNV infection in Atlantic salmon injected with CpG ODN. To analyze whether immunostimulatory ODN such as ODN 1681 could induce protection against viral infections in fish, challenge experiments with IPNV were chosen as an experimental test system. In experiment 1, fish were injected i.p. with different doses of ODN 1681, and injections of poly(I-C), a known IFN inducer in fish, and saline were included for comparison. The fish, in two parallel tanks (A and B), were bath challenged with IPNV 1 week after injection and monitored daily for signs of disease and mortality. The fish started to die at day 10, and the experiment was stopped at day 34, about 1 week after the fish in the control group had ceased to die (Fig. 3). In the CpG ODN-treated groups, the fish started to die at days 10 and 11, while the poly(I-C)-injected fish showed a delay in onset of mortality and started to die at day 13. There were no statistically significant differences in mortality between the replicates of the saline group and groups of fish that had received 1, 50, and 100 μg of CpG ODN. Thus, results for these groups were pooled (Table 1). Fish which had received 50 and 100μg of CpG ODN were significantly more resistant to IPNV infection than the saline-injected controls (P < 0.05, chi-square test), and the RPS values for these groups were 21 and 20%, respectively (Table 1). The lowest concentration of CpG ODN, 1μg per fish, offered no significant protection compared to results for the control group, while the injection of 10μg of CpG ODN and 100μg of poly(I-C) gave significant protection in tank A (P < 0.05 and 0.001, respectively) but not in tank B.
In experiment 2, groups of fish were injected i.p. with ODN 1681 and with non-CpG ODN 1720, poly(I-C), or saline as a control. The fish were placed in three tanks before challenge with IPNV. Tanks A and B with 70 fish per group were used to monitor mortality, while 5 fish from each group in tank C were sampled at days 7 and 21 postinfection and virus titers in the head kidneys of these fish were assessed. At day 7 postinfection, there were no mortalities in any of the groups in tank C (Table 2). No virus was detected in the CpG ODN- and poly(I-C)-injected fish, while a low virus titer could be detected in one fish in the saline group and in two fish in the non-CpG ODN-injected group (Table 2). At day 21 there were still no mortalities registered in the CpG ODN- and poly(I-C)-injected groups in tank C, while one out of five fish and two out of five fish were dead in the saline and non-CpG groups, respectively. The viral titers in the dead fish were not determined, but all the fish had clinical signs of IPN mortality and were found to be IPNV positive according to the IPNV agglutination kit. No virus could be detected in samples from the poly(I-C) group, while in the CpG group three out of five fish had no virus and only low virus titers could be detected in the remaining two.
agents that will detect IFN directly in salmonid fish. However, the Mx gene of Atlantic salmon has been cloned and characterized (52) and has been shown to be an IFN-α/β-induced gene in fish, as in mammals (45). Our results showed that both CpG DNA and poly(I-C) injection induce Mx expression in head kidney and spleen (Fig. 4), and a two-way analysis of variance showed significant effects of both time and treatment in the spleen and head kidney. In both organs, an induction of transcripts, although not significant, could be detected at 24 h postinjection. At 48 h postinjection, a significant Mx induction was seen in these organs for both CpG ODN- and poly(I-C)-injected fish, while at 96 h the induction decreased. In the poly(I-C)-treated fish, a strong Mx induction was still detected in both organs, but in CpG ODN-treated fish, no Mx expression was detected in the head kidney and a low, not significant expression was detected in the spleen.

DISCUSSION

Previous studies have demonstrated that CpG ODN are efficient vaccine adjuvants in mice and may also act as immunoprotective agents (28, 38). Although the adjuvant effect of DNA has been demonstrated in goldfish (26), the potential for using CpG DNA as a prophylactic treatment in fish has not been thoroughly investigated. The present work was undertaken to examine whether CpG ODN could induce resistance to viral infections in fish. We were primarily interested in the identification of a CpG motif that would give optimal stimulation in fish. It was therefore of interest to identify in vitro test systems that could predict in vivo efficacy in fish. In earlier studies it has been shown that salmonid cells secrete antiviral components upon stimulation with certain CpG ODN (24, 25), but a screening for maximal responsiveness has not been conducted. In other species it has been shown that CpG DNA are mitogenic for PBL, and assays to measure proliferation have been used to screen for activity (16, 34). In an introductory experiment, we examined the proliferative response of fish PBL to CpG ODN. Our results showed that Atlantic salmon PBL respond to CpG ODN in a sequence-specific manner, since non-CpG ODN and calf thymus DNA had no stimulatory effects. These studies also showed that proliferative responses varied among different CpG ODN, so this type of assay was found to be suitable for activity screening and it was combined with the IFN assay.

Based on previous results in which ODN 1668 and 1670, with the murine motif (GA/AA)CGTT, was shown to stimulate antiviral activity in Atlantic salmon leukocytes (24, 25), we designed a panel of different CpG phosphorothioate ODN. In this panel were ODN containing various combinations in the 6-mer core motif, and variations in the numbers and total lengths of CpG motifs were also tested. Both human and mouse motifs were included in this screening, and both stimulated fish leukocytes, although the human motifs had a higher stimulatory capacity in both assays. This result verifies what is described in other studies, i.e., that different species differ in their responses to specific CpG motifs and that the motif GT CGTT is the most effective in most species, including cattle, primates, cats, and dogs (reviewed in reference 44). Another similarity shared by fish and humans is that bacterial DNA fails to stimulate proliferation of their PBL (37), while *E. coli* genomic DNA is reported to induce mouse B cells to proliferate both in vivo and in vitro (34). Our study also showed that additional CpG motifs outside the 6-mer core contribute to the stimulatory effects. Reduction in the lengths of the ODN below 18 bp reduced or eliminated activity.

Herein we demonstrated for the first time that injection of CpG ODN in animals increases resistance to viral infections. Fish that were treated with CpG DNA prior to challenge with IPNV had reduced viral titers and mortality compared to those of control fish given either saline or control ODN. Optimal activation was seen with CpG ODN at doses of 50 and 100 μg per animal, while 1 μg gave no protection. The protection against infection obtained with CpG DNA was as efficient as injection with the IFN inducer poly(I-C). The induction of an IFN-α/β response in the CpG ODN- and poly(I-C)-injected fish was confirmed by semiquantitative PCR, which detected increased expression of the IFN-inducible Mx transcript. Earlier studies have shown that salmonids are protected from infectious hematopoietic necrosis virus (IHNV) (10) and from infectious salmon anemia virus infections when treated with poly(I-C) (21). Furthermore, Jensen et al. (21) showed that poly(I-C) injection in Atlantic salmon induces Mx protein expression in different organs, including head kidney and spleen, which is also documented in our study. Although Mx expression was higher and more sustained in the poly(I-C)-injected fish than in the CpG ODN-injected fish, there was no significantly higher protection of the poly(I-C)-treated fish in the challenge experiments. However, a more delayed onset of mortality was seen in the poly(I-C)-treated fish than in the CpG ODN-treated fish, and all poly(I-C)-injected fish were found to be virus negative at day 21 postchallenge, while IPNV was detected in two of five CpG ODN-treated fish. This difference may be due to the earlier and higher IFN induction in poly(I-C)-injected fish. Distribution studies of fluorescence-labeled CpG have shown that CpG ODN can be found both in head kidney and spleen 4 and 24 h after i.p. injection (unpublished data), which indicates that IFN induction most probably occurs locally in these organs, followed (possibly) by a systemic distribution.

Recently, it has become clear that IFN-α/β represents key molecules in the protective immune response to many virus infections not only by directly and indirectly interfering with replication of intruding virus but also by paving the way for subsequent specific responses (3). DNA vaccination studies with fish have indicated that INFs may play a role in the protection provided by these vaccines. DNA vaccines based on glycoproteins of salmonid fish rhabdoviruses induce protection as early as 7 to 8 days postvaccination (35, 40). The timing of this response is probably too early for a specific immune response in fish and indicates that nonspecific mechanisms are involved. A study by Kim et al. reported that all rainbow trout fry which received DNA vaccines containing G genes of three different fish rhabdovirus species, IHNV, snakehead rhabdovirus, and spring viremia of carp virus, were protected against IHNV challenge 30 days postvaccination, thus indicating nonspecific antiviral protection (27). The induction of IFN-α/β in the vaccinated animals was confirmed by detection of increased Mx production. In the challenge, the fish received two different doses of virus (10⁶ and 10⁵ PFU), and for the lower challenge dose, lower mortality was found for the group in-
FIG. 4. (A) Effects of CpG ODN and poly(I-C) injection on Mx expression in Atlantic salmon head kidney. PCR was performed as described in Materials and Methods. The level of expression was calculated relative to the actin expression level. Data are the means ± standard deviations of results for three to four fish.

(B) Effects of CpG ODN and poly(I-C) injection on Mx expression in Atlantic salmon spleen. PCR was performed as described in Materials and Methods. The level of expression was calculated relative to the actin expression level. Data are the means ± standard deviations of results for four fish. ** and *, statistical significance in comparison to the control at a P value of < 0.01 and < 0.05, respectively.
jected with plasmid alone than for control fish that had received phosphate-buffered saline (27). This result indicates that immunostimulatory DNA and CpG sequences in the plasmid backbone may contribute to protection at a low challenge dose.

CpG DNA is known to be an excellent immune adjuvant in various murine disease models and can augment both humoral and cellular immune responses (5, 8, 28, 38, 47). Also in naked DNA vaccines, it is reported that vaccination is much more potent when the plasmid vector for mammalian DNA contains unmethylated CpG motifs (29, 48, 53). Whether the protection obtained by DNA vaccination in fish can be explained by adjuvant-like activities of CpG motifs in the plasmid backbone is uncertain, since studies performed so far have shown that injection with vector alone or with other genes inserted gives little or no protection (39). Further analysis is needed before it can be concluded that the effects of such motifs contribute to the efficacy of DNA vaccines in fish. Most probably, future fish virus vaccines will be based on recombinant viral proteins, and since these antigens have poor immunogenicity, they will require adjuvants to elicit an adequate immune response. Many of the adjuvants used in fish vaccines, and in particular oil-based adjuvants, contribute to good protection, but at the same time they give serious side effects (43). CpG DNA used as an adjuvant is reported to induce stronger immune responses with less toxicity than other adjuvants according to test results with murine models (59). The potent immunostimulatory activities of CpG DNA reported for fish in this and other studies point to CpG DNA as an interesting adjuvant to be tested in fish vaccines.

ACKNOWLEDGMENTS

We thank E. Sandaker for excellent technical assistance and M. Marienborg and K. T. Slaters for help with the challenge experiments. We are grateful to K. Jutila for DNA sequencing assistance, B. S. Sæther and U. Strum for advice on statistical analysis, and I. Jensen for critical reading of the manuscript. This study was supported by The Research Council of Norway (grants 143286/140 and 133745/130) and the marine biotechnology program in Tromso (Mabit), Norway.

REFERENCES

4. Boudinot, P., P. Massin, M. Blanco, S. Riffault, and A. Benmansour. 1998. IFN-γ, a new fish gene induced by the rhabdovirus glycoprotein, has a virus-induced homologue in humans and shares conserved motifs with the MoaA gene induced by the rhabdovirus glycoprotein, has a virus.