Molecular Determinants of Species Specificity in the Coronavirus Receptor Aminopeptidase N (CD13): Influence of N-Linked Glycosylation

DAVID E. WENTWORTH* AND KATHRYN V. HOLMES

Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado 80262

Received 30 April 2001/Accepted 12 July 2001

Aminopeptidase N (APN), a 150-kDa metalloprotease also called CD13, serves as a receptor for serologically related coronaviruses of humans (human coronavirus 229E [HCoV-229E]), pigs, and cats. These virus-receptor interactions can be highly species specific; for example, the human coronavirus can use human APN (hAPN) but not porcine APN (pAPN) as its cellular receptor, and porcine coronaviruses can use pAPN but not hAPN. Substitution of pAPN amino acids 283 to 290 into hAPN for the corresponding amino acids 288 to 295 introduced an N-glycosylation sequon at amino acids 291 to 293 that blocked HCoV-229E receptor activity of hAPN. Substitution of two amino acids that inserted an N-glycosylation site at amino acid 291 also resulted in a mutant hAPN that lacked receptor activity because it failed to bind HCoV-229E. Single amino acid revertants that removed this sequon at amino acids 291 to 293 but had one or five pAPN amino acid substitution(s) in this region all regained HCoV-229E binding and receptor activities. To determine if other N-linked glycosylation differences between hAPN, feline APN (fAPN), and pAPN account for receptor specificity of pig and cat coronaviruses, a mutant hAPN protein that, like fAPN and pAPN, lacked a glycosylation sequon at 818 to 820 was studied. This sequon is within the region that determines receptor activity for porcine and feline coronaviruses. Mutant hAPN lacking the sequon at amino acids 818 to 820 maintained HCoV-229E receptor activity but did not gain receptor activity for porcine or feline coronaviruses. Thus, certain differences in glycosylation between coronavirus receptors from different species are critical determinants in the species specificity of infection.

Human coronaviruses (HCoV) in two serogroups represented by HCoV-229E (serogroup 1) and HCoV-OC43 (serogroup 2) are an important cause of upper respiratory tract infection. Serological studies suggest that they cause from 15 to 30% of human upper respiratory infections or colds (25). Although there is no animal model for the pathogenesis of HCoV respiratory infections, HCoV-229E and HCoV-OC43 have been administered intranasally to human volunteers, and this has shown that people can be repeatedly infected by the same strain (5). There is also in vitro and in vivo evidence for infection of cells of the central nervous system (CNS) by HCoV (39, 51, 68, 69). Coronaviruses have a lipid membrane that has large peplomers that protrude from the virion and give it the appearance of a corona. These peplomers or spike glycoproteins are the viral attachment proteins. The 27-kb genomic RNA of HCoV-229E is positive sense, has a 5′ cap, is polyadenylated at the 3′ terminus, and is infectious when transfected into cells of a wide variety of species (25). In contrast, infection by HCoV-229E virions is limited to cells of human or feline origin in vitro, demonstrating that the receptor for HCoV-229E is a major determinant in species specificity (25).

The cellular receptor for HCoV-229E is human aminopeptidase N (hAPN). HCoV-229E infection is blocked by monoclonal antibodies (MAbs) to hAPN, and murine fibroblasts that are nonpermissive for HCoV-229E become susceptible after transfection with hAPN expression plasmids (77). Additionally, infection of human neural cells by HCoV-229E requires hAPN (39). hAPN is also involved in human cytomegalovirus (CMV) infection (41, 57, 63). CMV incorporates hAPN into its envelope, and hAPN is implicated in autoimmune induction by CMV in immunocompromised patients (21, 64, 65).

APN, also called CD13 (EC 3.4.11.2), is a 150- to 160-kDa type II glycoprotein that is a membrane peptidase (42). It is a metalloprotease that binds zine through a highly conserved HELAH amino acid motif, and deletions or mutations in this motif inhibit enzymatic activity (42, 54). APN expressed on the cell surface is heavily glycosylated, and carbohydrates account for approximately 30% of the molecular mass (8, 60). APN is expressed as a dimer that protrudes 10.5 nm from the cell surface of epithelial cells of the kidney, intestine, and respiratory tract; granulocytes; monocytes; fibroblasts; endothelial cells; cerebral pericytes at the blood-brain barrier; and synaptic membranes in the CNS (4, 29, 38, 42, 48, 54, 60, 62, 66). APN has a wide range of biological activities, including the removal of individual amino acids from N termini of small peptides in the lumen of the small intestine, cleaving peptides bound to major histocompatibility complex class II molecules of antigen presenting cells, and degrading neurotransmitters at synaptic junctions (40, 48, 54). hAPN is a marker for acute myeloid leukemia and plays a role in tumor invasion (19, 31, 36, 50, 61, 67).

APN also serves as the major receptor for other serogroup 1 coronaviruses that infect other species, including transmissible...
gastroenteritis virus (TGEV) of swine, porcine respiratory coronavirus, feline infectious peritonitis virus (FIPV), and feline enteric coronavirus (FECoV) (10, 11, 71). The hAPN, porcine enteric coronavirus (TGEV) of swine, porcine respiratory coronavirus, and fAPN both have 78% amino acid identity and 86% similarity to human enteric coronavirus (FECoV) (10, 11, 71). The hAPN, pAPN, and fAPN amino acids 278 to 306, aligned with fAPN amino acids 277 to 305 and pAPN amino acids 273 to 301, are shown. The numbers above the sequence correspond to the hAPN glycoprotein, and the consensus sequence is shown on the bottom line. Identical amino acids are shown on a light gray background, and dissimilar amino acids are shown on a dark gray background, similar amino acids are shown on a white background.

Many chimeras and mutants have been generated between fAPN, pAPN, and hAPN to study how specific amino acid changes influence receptor activity and species specificity of serogroup 1 coronaviruses of cats, pigs, and people. However, this is the first study that demonstrates the influence that N-linked glycosylation of APN has on coronavirus receptor activity and species specificity. This study also augments the limited understanding of the influence N-linked glycosylation of viral receptors has on virus-receptor interactions.

MATERIALS AND METHODS

Cells and viruses. All cells were maintained in the appropriate medium supplemented with 2% Antibiotic-Antimycotic (GIBCO BRL, Grand Island, N.Y.) at 37°C and 5% CO\textsubscript{2} in Falcon tissue culture treated flasks or plates (Becton Dickinson and Company, Franklin Lakes, N.J.). Human diploid lung fibroblasts, MRC5 cells (American Type Culture Collection [ATCC], Manassas, Va.), were grown from passage 19 to 27 in Eagle’s minimal essential medium (MEM) supplemented with 10% heat-inactivated fetal bovine serum (FBS), 1 mM sodium pyruvate (GIBCO BRL), and 1 mM nonessential amino acids (GIBCO BRL). The BHK-21 line of baby hamster kidney fibroblasts (from Robert Garceau, University of California Health Sciences Center, Denver), CMT91 cells (ATCC), swine testicle cells (from David Brian, University of Tennessee, Knoxville), and Fels caturo whole fetus (FCWF) cells (from Niels Pedersen, University of California at Davis) were grown in Dulbecco’s modified MEM (DMEM) supplemented with 10% heat-inactivated FBS (GIBCO BRL).

HCoV-229E was obtained from ATCC (VR740, lot W4) and was propagated in MRC5 cells at 34°C and 5% CO\textsubscript{2}. The stock virus was amplified for 24 h, plaque purified twice, and amplified by inoculation of a flask containing 2 × 10^7 MRC5 cells with a low multiplicity of infection (MOI ~ 0.006) and incubation for 48 h to produce virus seed stock designated DW6-W was collected. The virus titer was determined by plaque and 50% tissue culture infective dose assays in MRC5 cells. FCoV 79-1683 was propagated in FCWF cells, and TGEV clone E (kindly provided by David Brian, University of Tennessee, Knoxville) was grown in porcine swine testicle cells as described (71).

hAPN plasmid construction, PCR mutagenesis, and sequence analysis. The wild-type hAPN expression plasmid wt-hAPN (also designated E88A10) was produced by subcloning an hAPN cDNA fragment, accession number M22324, from pBSK+ (Stratagene, La Jolla, Calif.) into the pCi-neo expression plasmid (Promega Corporation, Madison, Wis.) using XhoI and XbaI. To create p6-hAPN, two fragments of hAPN from nucleotides 111 to 990 and nucleotides 991 to 1216 were generated by PCR with Phr1; one fragment was produced with primers hAPN-111 and hAPN-990R, and the other was produced with p-hAPN-991 and DT22 (Table 1), according to the manufacturer’s instructions (Stratagene, La Jolla, Calif.). The temperature cycle parameters used were 5 cycles of 95°C for 1 min, 50°C for 1 min, and 72°C for 2 min and then 30 cycles of 95°C for

FIG. 1. Amino acid alignment of a small region of hAPN, fAPN, and pAPN. The predicted amino acid sequences of hAPN, fAPN, and pAPN were aligned using Clustal W (version 1.4) and the Blosum similarity matrix. hAPN amino acids 278 to 306, aligned with fAPN amino acids 277 to 305 and pAPN amino acids 273 to 301, are shown. Identical amino acids are shown on a light gray background, and dissimilar amino acids are shown on a dark gray background, similar amino acids are shown on a white background.
Ed and (GIBCO BRL). Colonies were picked and clones were screened by restriction at 37°C to remove the template and used to transform reaction products were analyzed on either an ABI 373A or an ABI Prism 377 Dpn™ manufacturer’s instructions (Stratagene). The products were digested with Pfu polymerase using mutagenic primers (Table 1) with 18 temperature cycles of 1 min, 60°C for 1 min, and 72°C for 2 min. These amplicons were mixed together and then digested with NcoI and ligated to NcoI-cut pCite2a (Novagen, Madison, Wis.) to produce E74B23. The naturally occurring NcoI sites at positions 121 and 1178 of hAPN ligated to the plasmid arms and blunt end ligation occurred between the PCR products from nucleotides 990 to 991. This changed D377VYEKQAS1178 in hAPN to O377SVNETAQ225 and created an HpaI site. This clone was sequenced to ensure that only the desired mutations were produced. An NcoI fragment from E74B23 was subcloned into an hAPN cDNA clone (E83A3) in pBSK+ that lacks the wild-type NcoI fragment. This produced a full-length hAPN clone that was identical to wt-hAPN except for the desired substitutions (E84A4). This mutant hAPN cDNA was subcloned into the pCi-neo expression plasmid (Promega Corporation) using XhoI and XhoI to create p6-hAPN (laboratory designation E85A4). All the restriction enzymes used were purchased from New England Biolabs (Beverly, Mass.). Site-directed mutagenesis was done by PCR amplifying various templates with Pfu polymerase using mutagenic primers (Table 1) with 18 temperature cycles of 95°C for 30 s, 55°C for 1 min, and 68°C for 18 min, according to the manufacturer’s instructions (Stratagene). The products were digested with DpnI for 1 h at 37°C to remove the template and used to transform Escherichia coli DH5α (GIBCO BRL). Colonies were picked and clones were screened by restriction endonuclease digestion and/or PCR analysis. Each of the clones amplified and used for transformation was sequenced to ensure that it contained only the desired mutations. The hAPN/N291K expression plasmid (laboratory designation, F1A1) was generated from wt-hAPN using primers hAPN E291N-Q293T/F and hAPN E291N-Q293T/R. revertants hAPN/E291N-KT and hAPN/N291KQ (laboratory designations, F2A2 and F3A4) were generated from hAPN/N291K/F using primers m-hAPN N291E/F and m-hAPN N291E/R or m-hAPN T293Q/F and m-hAPN T293Q/R, respectively. Expression plasmids p6-hAPN/N291E and p6-hAPN/T293Q (laboratory designations, E96A1 and E94A15) were generated using hAPN/N291E and hAPN/T293Q/R, or hAPN/N291E/R or hAPN/T293Q/F and hAPN-T293Q/R. Plasmids hAPN-T280E or p6-hAPN/N815K and p6-hAPN/T280E (laboratory designations, E100A4 or E97A9 and E98A14) were generated from wt-hAPN or p6-hAPN using primers hAPN-T280E/R or hAPN-T280E/F and hAPN-N815K/R. The plasmids were sequenced by the University of Colorado Cancer Center DNA Sequencing and Analysis Core Facility using ABI Prism kits from Applied Biosystems (Foster City, Calif.) containing AmpliTaq DNA Polymerase FS in one of the following: dRhodamine Terminator Cycle Sequencing Ready Reaction kit, BigDye Terminator Cycle Sequencing Ready Reaction kit, or dGTP BigDye Terminator Cycle Sequencing Ready Reaction kit. The standard sequencing thermocycling parameters were the following: denaturation for 5 min at 94°C, followed by 30 cycles of denaturation at 94°C for 10 s, annealing at 50°C for 5 s, and extension-termination at 60°C for 4 min, followed by incubation at 4°C until the samples were processed to remove the residual dye-labeled deoxycytidinates (dye terminators). The reaction products were analyzed on either an ABI 373A or an ABI Prism 377 DNA fluorescent sequencer, both standard and XL versions (Applied Biosystems). The sequences were analyzed using Blast (1), MacVector 6.5.3 (Oxford Molecular Group, Campbell, Calif.), and Vector NTI suite (Informax, Bethesda, Md.). The hAPN, pAPN, and IAPN sequences were obtained from the GenBank database, accession numbers M22324, Z29522, and US8920, respectively.

Transfection and selection of cells.
BK-H1 cells were seeded at 2 × 10⁶ per well in six-well dishes or on glass coverslips in six-well dishes; 18 to 20 h later, when the cells had reached 70 to 80% confluency, they were transfected with 9 μg of plasmid and 12 μl of Lipofectamine reagent (GIBCO BRL) per well, according to the manufacturer’s instructions, and incubated for 5 h at 37°C and 5% CO₂ in Optitex (GIBCO BRL). Then, the medium was doubled by adding 1 ml of DMEM containing 20% FBS. The cells were incubated for 16 to 18 h at 37°C and 5% CO₂. The medium was changed to growth medium, and hAPN protein expression was determined by immunofluorescence or immunoblot and/or the cells were inoculated with HCoV-229E 24 to 48 h after transfection. CMT93 cells were seeded at 3 × 10⁴ per well in six-well dishes; 18 to 20 h later (at 60% confluency) the cells were transfected with 9 μg of plasmid and 15 μl of Ptx-2 reagent (Invitrogen) per well, according to the manufacturer’s instructions. The cells were incubated for 6 h at 37°C and 5% CO₂ in OptiMem (GIBCO BRL), and then the transfection solution was replaced with growth medium and the cells were cultured for 20 h and split into 150-mm-diameter dishes in growth medium containing G418 (500 μg/ml; GIBCO BRL). The cells were grown to confluency, and this mixed population of G418-resistant cells was sorted two times by fluorescence-activated cell sorting (FACS) with MAbs WM47, as described below, and tested for APN protein expression by immunofluorescence, FACS, immunoblot, and enzymatic activity assays (77). Limiting dilution was used to generate clones from the mixed population of hAPN-expressing cells.

Antibodies.
Anti-hAPN MAbs WMB47 (Dako Corporation, Carpinteria, Calif.), MY7 (BioGenex, San Ramon, Calif.), and WM15 and SJ1D1 (Biodesign, Kennebunk, Maine) were purchased, and MY32 was kindly provided by C. I. Civin, Johns Hopkins Oncology Center, Baltimore, Md. Anti HCoV-229E spike glycoprotein MAb S-1-H was kindly provided by Pierre Talbot, University of Quebec, Laval, Quebec, Canada. Polyclonal goat anti-HCoV-229E was produced from NP-40-purified HCoV-229E in collaboration with Lawrence Sturman (New York State Health Department, Albany), and polyclonal mouse anti-hAPN was prepared by inoculating Swiss Webster mice with NIH 3T3 cells expressing hAPN (Zip cells) (77). FCoV and TGEV antigens were detected with polyclonal feline anti-FIPV serum (Biodesign, Kennebunk, Maine).

FACS.
After G418 selection, the cells were trypsinized with trypsin-EDTA (GIBCO BRL) and washed three times in 1 ml of wash buffer (0.1% [wt/vol] bovine albumin Fraction V [Sigma, St. Louis, Mo.] in phosphate-buffered saline [PBS]). One million cells were incubated on ice in 100 μl of a 1:100 dilution of WM47 for 1 h at 4°C. The cells were washed three times with 1 ml of wash buffer and incubated for 30 min at 4°C in 100 μl of a 1:100 dilution of affinity-purified, phycocyanin-conjugated goat F(ab)₂ anti-mouse immunoglobulin (DAKO

TABLE 1. Oligonucleotides used for PCR, mutagenesis, and sequencing

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward</td>
<td>hAPN-111</td>
</tr>
<tr>
<td>h-pAPN-991</td>
<td>AAGCAGGGCCAAAAATGGTTGTTT</td>
</tr>
<tr>
<td>m-hAPN E291N-Q293T/F</td>
<td>GTCGACTAGCTTAAAGAAGCGCATCAATGG</td>
</tr>
<tr>
<td>m-hAPN N291E/F</td>
<td>TTGGACATTGTTAAGAAGCGCATCC</td>
</tr>
<tr>
<td>m-hAPN T293Q/F</td>
<td>FAGTTAAACAGACGAGCTCAGATGGTGTTT</td>
</tr>
<tr>
<td>h-pAPN N291E/R</td>
<td>GCACTCTGCAAGAGCGCATCC</td>
</tr>
<tr>
<td>h-pAPN-T293Q/F</td>
<td>TCTGGTTAATGGACGGCACAATAGT</td>
</tr>
<tr>
<td>hAPN-N818K/F</td>
<td>GACGAGCTCGAAAGCCACACTGGT</td>
</tr>
<tr>
<td>hAPN-T820E/F</td>
<td>CGGAATATGGAGCTCTGAATAGG</td>
</tr>
<tr>
<td>DT-021</td>
<td>CCGACCTTCAGAAGACCC</td>
</tr>
<tr>
<td>Reverse</td>
<td>hAPN-990R</td>
</tr>
<tr>
<td>DT-022</td>
<td>AGTCTCCTCGGTTAGTGTCACC</td>
</tr>
<tr>
<td>hAPN E291N-Q293T/R</td>
<td>CATCGGATCCTGTTAAGAAGCAGAC</td>
</tr>
<tr>
<td>hAPN N291E/R</td>
<td>GATGCCGGTCTCCTACAAGTTCGTC</td>
</tr>
<tr>
<td>m-hAPN T293Q/R</td>
<td>CAAAGACCATGTTGCTACGTCGTTAAGAAG</td>
</tr>
<tr>
<td>h-pAPN N291E/R</td>
<td>GTTGGCCGTTCTCTCAAGGATTT</td>
</tr>
<tr>
<td>h-pAPN-T293Q/R</td>
<td>CAGCATGTTGCTCTGCAAAGGC</td>
</tr>
<tr>
<td>hAPN-N818K/R</td>
<td>GACGAGCTCGAAAGCCACACTGGT</td>
</tr>
<tr>
<td>hAPN-T820E/R</td>
<td>CCCTGTAGCAGGCTCTGAAAGCC</td>
</tr>
</tbody>
</table>

DNA glycosylation of APN and Coronavirus receptor activity
Corporation). The cells were washed three times with 1 ml of wash buffer and resuspended in 500 µl of wash buffer and sorted into G418 selection medium by flow cytometry at the University of Colorado Health Sciences Center Flow Cytometry Core Facility in a Coulter XL with System II software (Beckman Coulter, Hialeah, Fla.). These cells were expanded, sorted again, and grown for one to nine passages. Each cell line was shown by FACS with WM47 to express similar levels of hAPN and had mean fluorescence intensity that ranged from 5.4 (hAPN/N291KQ) to 9.9 (p6-hAPN). FACS of the mutant hAPN cell lines by a panel of anti-hAPN MAbs was done, as described above, with WM47, WM15, MY7, MY32, or 5D1D1. However, after the last wash, the cells were fixed in 500 µl of fix buffer (1.6% paraformaldehyde [Ted Pella, Inc., Redding, Calif.] in PBS).

FIG. 2. Mutations in amino acids 288 to 295 of hAPN blocked HCoV-229E infection. CMT93 cell lines were generated by transfection with wt-hAPN (A and B), p6-hAPN (C and D), or pCi-neo (E and F), and the hAPN-expressing lines (A to D) were sorted by FACS for similar expression levels of hAPN protein. hAPN protein was shown by indirect IFA with MAb WM47 (A, C, and E) and infection by HCoV-229E was shown by indirect IFA, 22 h postinoculation, with anti-spike glycoprotein MAb 511H.6 (B, D, and F).

RESULTS

Substitution of hAPN amino acids 288 to 295 with pAPN amino acids 283 to 290 blocked infection by HCoV-229E. To determine if six amino acid substitutions in an eight-amino-acid stretch, from amino acids 288 to 295, of hAPN alters its function as a receptor for HCoV-229E, we used primer-based PCR mutagenesis to change the amino acids in this region of hAPN to the analogous pAPN residues, creating the p6-hAPN construct. Murine CMT93 cells, which are nonpermissive for HCoV-229E, were transfected with plasmids expressing wt-hAPN, a mutant hAPN that has six substitutions to the porcine amino acids at positions 288, 289, 291, 292, 293, and 295, (p6-hAPN), or the empty expression plasmid (pCi-neo). These cells were selected for G418 resistance and sorted for similar hAPN expression levels using FACS with MAb WM47. The cells transfected with wt-hAPN and p6-hAPN expressed equivalent levels of APN as shown by indirect IFA with MAb WM47 (Fig. 2A and C). Inoculation of cells transfected with wt-hAPN, p6-hAPN, or the pCi-neo expression plasmid resulted in HCoV-229E infection of cells that expressed wild-type hAPN as shown by indirect IFA with anti-HCoV-229E spike MAb 511H.6 (Fig. 2B). In contrast, transfection with the mutant hAPN p6-hAPN or the plasmid control pCi-neo resulted in no HCoV-229E receptor activity (Fig. 2D and F, respectively).

Expression of wt-hAPN and p6-hAPN in clones obtained from this mixed population of cells was determined by FACS analysis using MAb WM47. FACS analysis showed that the wild type hAPN clone F4G9 and two p6-hAPN clones, F4C10 and C5F8, expressed hAPN levels with mean fluorescence intensity values of 2.95, 2.22, and 9.4, respectively. Only the clone expressing wild-type hAPN was permissive to HCoV-229E (data not shown). p6-hAPN clone C5F8 expressed approximately three times more hAPN than did wild-type hAPN F4G9, yet lacked HCoV-229E receptor activity (data not shown).
Thus, the lack of HCoV-229E receptor activity of p6-hAPN was not due to a low level of the mutant receptor on the cell surface. Additionally, FACS analysis of these clones using MAb SJ1D1, MY32, MY7, or WM15 illustrated that this panel of MAbs recognized both the wild-type and mutant hAPN glycoproteins (data not shown). These MAbs recognize four different epitopes of hAPN: WM15 blocks HCoV-229E infection and APN enzymatic activity, but does not bind a deletion mutant lacking the HELAH motif; MY7 also blocks infection, partially inhibits enzymatic activity, and binds to the HELAH deletion mutant; MY32 blocks infection, interacts with enzymatic activity, and binds to the deletion mutant; SJ1D1 has no effect on infection or APN activity and binds to the deletion mutant (2). All of these MAbs bound hAPN and p6-hAPN; however, MY7 showed a slight decrease in binding to the p6-hAPN mutant (data not shown). Furthermore, cells expressing the p6-hAPN mutant had enzymatic activity equal to or greater than cells expressing wt-hAPN (data not shown). The observed reactivity with this panel of MAbs and the aminopeptidase activity indicate that the six amino acid substitutions in this region of hAPN did not result in a dramatic change in the protein conformation and show that substitution of these six amino acids of hAPN with pAPN blocks HCoV-229E infection.

Removal of a potential N-linked glycosylation site within the substituted region of hAPN restored HCoV-229E receptor activity. Analysis of the amino acid sequence within the substituted region showed that this change inserted a putative N-linked glycosylation signal (NET) at amino acids 291 to 293 of p6-hAPN that is not conserved in hAPN or fAPN (Fig. 1). To investigate the influence of this glycosylation signal on HCoV-229E receptor activity, we used site-directed mutagenesis to remove this glycosylation signal from the p6-hAPN construct that did not serve as a functional receptor. Reversion of asparagine 291 to glutamic acid (N291E) encoded by wild-type hAPN or threonine 293 to glutamine (T293Q) created two separate expression plasmids, p6-hAPN/N291E and p6-hAPN/T293Q, respectively. Transient transfection of BHK-21 cells with wt-hAPN, p6-hAPN, p6-hAPN/N291E, p6-hAPN/T293Q, or pCi-neo resulted in expression of hAPN in all of the cells except those transfected by vector alone or untransfected BHK-21 cells as demonstrated by immunoblotting with polyclonal mouse antiserum to hAPN (Fig. 3A, lanes 1 to 5, respectively). HCoV-229E inoculation of BHK-21 cells transiently transfected with these expression constructs resulted in infection of cells that expressed the wild-type hAPN and cells that expressed the revertants p6-hAPN/N291E and p6-hAPN/T293Q, or pCi-neo resulted in expression of hAPN in all of the cells except those transfected by vector alone or untransfected BHK-21 cells as demonstrated by immunoblotting with polyclonal mouse antiserum to hAPN (Fig. 3A, lanes 1 to 5, respectively). HCoV-229E inoculation of BHK-21 cells transiently transfected with these expression constructs resulted in infection of cells that expressed the wild-type hAPN and cells that expressed the revertants p6-hAPN/N291E and p6-hAPN/T293Q (Fig. 3B, lanes 1, 3, and 4, respectively). In contrast, cells that expressed p6-hAPN, pCi-neo-transfected cells, and untransfected cells were not susceptible to HCoV-229E (Fig. 3B, lanes 2, 5, and 6, respectively).

Another way to analyze receptor function is to determine...
the titer of virus released postinoculation. We found that there was a 100- to 1,000-fold increase in virus titer in supernatants of cells transfected with wt-hAPN or either of the two single-amino-acid revertants but no increase in virus titer from cells transfected with the p6-hAPN construct. None of these constructs had receptor activity for the porcine coronavirus TGEV (data not shown). The data showed that hAPN proteins with five amino acid substitutions that changed this region from D288YVEKQAS295 to Q288SVEETAQ295 or Q288SVNEQAQ295 served as functional HCoV-229E receptors; however, the glycosylation signal, underlined, in Q288SVETQ295 blocked receptor activity.

Glycosylation of hAPN at amino acid 291 blocked infection by HCoV-229E. We used site-directed mutagenesis to insert the glycosylation signal into wild-type hAPN to determine if glycosylation of N291 was the only change required to block receptor activity of hAPN for HCoV-229E. When this clone (hAPN/N291KT) had been characterized, we made single amino acid reversions, changing N291E or T293Q and creating two new hAPN expression constructs, hAPN/E291KT and hAPN/N291KQ, respectively. These wild-type and mutant hAPN expression constructs, as well as the pCi-neo expression plasmid, were used to transfect nonpermissive murine CMT93 cells in order to create stable cell lines that expressed similar levels of hAPN. The transfected cells were selected for G418 resistance, and those transfected with hAPN expression plasmids were sorted twice for hAPN expression using FACS with MAb WM47. The stably transfected cell lines, except those transfected by the pCi-neo expression plasmid, all expressed similar levels of hAPN as demonstrated by FACS using MAb WM47 (data not shown). Ensuring that the cell lines expressed similar levels of hAPN showed that glycosylation of hAPN at N291 did not disrupt intracellular transport or expression at the cell membrane.

The cell lines were inoculated with HCoV-229E for 1 h, and cell lysates were isolated 20 h postinoculation. Immunoblot analysis of the cell lysates with polyclonal goat antiserum to HCoV-229E clearly demonstrated infection of cells expressing the wild-type hAPN or the revertants (hAPN/E291KT or hAPN/N291KQ) that remove the glycosylation signal at N291 (Fig. 4, lanes 1, 4, and 5, respectively). In contrast, cells that expressed p6-hAPN and hAPN with the glycosylation sequon at amino acids 291 to 293 (hAPN/N291KT) lacked HCoV-229E receptor activity as shown by immunoblotting (Fig. 4, lanes 2 and 3). Expression of wild-type and mutant hAPN proteins in these various cell lines was also shown by IFA using MAb WM47 (Fig. 5A, C, E, G, and I). Analysis of HCoV-229E infection of the transfected cells after a 20-h inoculation showed a high level of receptor activity in the cell lines that expressed wt-hAPN (Fig. 5B) and the two single-amino-acid revertants (hAPN/E291KT or hAPN/N291KQ) that remove the N291-glycosylation signal (Fig. 5H and J). However, the cell line that expressed hAPN with a glycosylation sequon at amino acids 291 to 293 (hAPN/N291KT) showed a very low level of HCoV-229E receptor activity (Fig. 5F). Data from the immunoblots was slightly different from IFA data in that cells expressing p6-hAPN or hAPN/N291KT completely lacked receptor activity as shown by immunoblotting (Fig. 4, lanes 2 and 3), whereas very few cells were positive by IFA (Fig. 5F). These differences are likely because immunoblots are less sensitive than IFA when very few cells are infected and due to the extreme virus challenge used in the IFA experiment. Comparison of titers of virus released by the various cell lines showed a 100- to 1,000-fold increase when the cells expressed the wild-type hAPN or the revertants (hAPN/E291KT or hAPN/N291KQ), but no increase in titer from cells expressing p6-hAPN, hAPN/N291KT or pCi-neo. In summary, immunoblotting, IFA, and release of virus from stably transfected cell lines demonstrated that N-linked glycosylation of hAPN at amino acid 291 alone blocked infection by HCoV-229E.

Glycosylation of hAPN at amino acid 291 blocked infection by inhibiting binding of HCoV-229E. Glycosylation of N291
may inhibit HCoV-229E receptor activity of hAPN either by blocking virus binding or by inhibiting a postbinding step required for virus entry, such as a conformational change in APN or viral S glycoproteins. To determine if N291 glycosylation influenced virus binding, we tested the ability of HCoV-229E to bind to stably transfected, FACS-sorted, CMT93 cell lines. The cell lines expressed wild-type hAPN, mutants containing the glycosylation sequon at amino acids 291 to 293, p6-hAPN (which has six amino acid substitutions) or hAPN/N291KT (which has two amino acid substitutions), the two single amino acid revertants (hAPN/E291KT, hAPN/N291KQ) or the expression vector (pCi-neo). All of the hAPN cell lines expressed similar levels of hAPN at the cell surface. HCoV-229E containing RNA labeled with [3H]-uridine was incubated with the various cell lines at 4°C for 2 h, the cells were washed, and virus binding was quantitated by scintillation counting. Cell lines expressing wild-type hAPN, hAPN/E291KT, or hAPN/N291KQ, which lacked the glycosylation sequon at amino acids 291 to 293, bound 100, 99.8, and 78.0% of the virus, respectively (Fig. 6). In contrast, cells that expressed p6-hAPN or hAPN/N291KT, which had the glycosylation sequon at amino acids 291 to 293, bound 3.1 and 17.4% of the virus, respectively (Fig. 6). These experiments illustrate that N291 glycosylation of hAPN directly inhibited binding of HCoV-229E to the receptor on the plasma membrane.

Removal of a glycosylation signal at N818 of hAPN did not change HCoV-229E receptor activity or allow infection by TGEV or FCoV. The results described above proved that glycosylation of hAPN at N291 blocked the HCoV-229E receptor activity of hAPN. Furthermore, fAPN, which serves as a receptor for feline and porcine coronavirus and HCoV, is less glycosylated than hAPN or pAPN. To determine if glycosylation sites in hAPN that are not conserved in pAPN or fAPN were responsible for the species-specific receptor interaction observed in serogroup 1 coronaviruses, we removed a potential glycosylation site from wt-hAPN and p6-hAPN. Sequence analysis of APN glycoproteins identified a potential glycosylation sequon at amino acids 818 to 820 of hAPN that is not conserved by pAPN or fAPN. N818 corresponds with Q820 of pAPN and is within amino acids 670 to 840 of fAPN, which are required for TGEV and FIPV receptor activity (22).

To determine if the removal of this N-linked glycosylation sequon converted hAPN into a functional receptor for porcine or feline coronaviruses, we used site-directed mutagenesis to remove this sequon from wild-type hAPN and p6-hAPN, creating hAPN/N818E and p6-hAPN/N818E or p6-hAPN/T820E. These new expression plasmids were transfected into CMT93 cells, selected for G418 resistance, and sorted twice for hAPN expression using FACS with MAb WM47. The stably transfected CMT93 cells and FCWF cells were inoculated with HCoV-229E, TGEV, or FCoV 79-1683 for 1 h. Cell lysates were isolated 22 h postinoculation, separated by SDS-PAGE and immunoblotted with goat polyclonal anti-HCoV-229E serum (Fig. 7A) or feline polyclonal anti-FIPV serum (Fig. 7B and C). The FCWF cells express fAPN and are permissive to HCoV-229E, TGEV, and FCoV or FIPV (71). FCWF cells were used as a positive control for virus infection (Fig. 7, lanes 1). The results indicated that removal of the potential glycosylation site at N818 of hAPN did not alter the ability of HCoV-229E to use the protein as a receptor (Fig. 7A, lane 4).
though this protein has a glycosylation pattern more similar to fAPN, it lacked receptor activity for TGEV and FECoV (Fig. 7B and C, lanes 4). Removal of the glycosylation sequon at amino acids 818 to 820 from p6-hAPN results in a protein that should have a glycosylation pattern that is similar to that of pAPN. However, cells that expressed p6-hAPN/N818E or p6-hAPN/T820E proteins also lacked receptor activity for TGEV and FECoV (Fig. 7B and C, lanes 5 and 6). The results from

FIG. 6. Binding of HCoV-229E was inhibited by the addition of a glycosylation signal at amino acid 291 of hAPN. CMT93 cell lines that had similar levels of hAPN surface expression were mixed with 3H-labeled virus, the cells were washed and lysed, and 3H was counted as described in Materials and Methods. The average 3H-labeled virus bound by the wt-hAPN was 1.38 × 10^4 cpm and was defined as 100% binding. The average total counts bound by cells transfected with pCi-neo was defined as 0% binding. The average of the other cell lines was reported as a percentage of wild-type binding activity, and the error bars represent the standard deviation of the three replicates.

FIG. 7. The influence of a glycosylation signal at N818 of hAPN and p6-hAPN on receptor activity for serogroup 1 coronaviruses of humans, pigs, and cats. Nucleocapsid (N) proteins (arrows) were identified by immunoblotting with goat polyclonal antisera to HCoV-229E (A) or feline polyclonal antiserum to FIPV that cross-reacts with TGEV (B and C). FCWF (lane 1) or CMT93 cell lines that express wt-hAPN (lane 2), p6-hAPN (lane 3), hAPN/N818E (lane 4), p6-hAPN/N818E (lane 5), and p6-hAPN/T820E (lane 6) or cell lines created with the empty expression vector pCi-neo (lane 7) were inoculated with HCoV-229E (A), TGEV (B), or FECoV 79-1863 (C).
these experiments suggest that glycosylation of N286 of APN is not the sole discriminator of species specificity.

DISCUSSION

A major determinant of the species specificity and tissue tropism of viruses is the presence of a specific receptor(s) on the plasma membrane of the host cells. This is true for many viruses, including human immunodeficiency virus (HIV) (CD4 and CXCR4 or CCR5), Epstein-Barr virus (CD21), major rhinoviruses (ICAM-1), poliovirus (PVR), measles virus (CD46), mouse hepatitis virus (murine CEACAM1), and serogroup I coronaviruses (APN or CD13) (14, 15, 18, 72, 77). Many viral attachment proteins and cellular receptors have posttranslational modifications that affect their interaction. These include proteolytic processing, protein folding, and glycosylation. Glycosylation of the hemagglutinin of influenza A and envelope of lentiviruses can have dramatic effects on cleavage activation, immune escape, virulence, and interactions with cellular receptors (3, 6, 7, 12, 13, 16, 27, 47, 53, 55, 56, 76). In contrast to the ample information regarding effects of glycosylation on virus attachment proteins the limited knowledge of the effects of receptor glycosylation on virus-receptor interactions. The glycosylation of the cellular receptor impacts virus receptor interactions of measles, HIV, and murine leukemia viruses (MuLVs) (17, 45, 59). Studies of the measles virus receptor (CD46) demonstrate that N-glycan addition increases receptor activity (26, 43–45). In contrast, removal of two N-linked glycosylation sites in CXCR4, an HIV coreceptor, increases fusion and entry of HIV type 2 strain ROD/B, illustrating that glycosylation of virus receptors may weaken their interaction with viral attachment proteins (59).

The data presented in this work show that glycosylation of hAPN at amino acid 286 blocks infection by HCoV-229E. The initial hAPN mutant (p6-hAPN), which has pAPN amino acids 283 to 290 substituted for amino acids 288 to 295 of hAPN, completely lacks receptor activity for HCoV-229E. One possible reason for the lack of receptor activity could be poor surface expression of the mutant receptors. To control for this we used cell lines sorted for similar levels of wild-type and mutant hAPN surface expression as well as clones that express p6-hAPN at similar levels and levels three times higher than wild-type hAPN on the plasma membrane. Mixed cell lines and clones that express relatively normal levels of p6-hAPN and a clone that has high-level expression of p6-hAPN lacked receptor activity. This mutant contains six amino acid substitutions, of which two confer a potential glycosylation signal. Glycosylation at N291 could alter APN’s folding in the endoplasmic reticulum and Golgi and its conformation on the cell surface and indirectly cause a loss of HCoV-229E receptor activity (23, 52). However, APN enzymatic assay, FACS selection with WM47, and further analysis with a panel of MAb’s that bind four other epitopes of wt-hAPN indicate that the amino acid substitutions have little effect on five different epitopes or the aminopeptidase activity (2). These data indicate that the protein is folded normally and expressed correctly on the cell surface. This demonstrates that the loss of HCoV-229E receptor function is due to a change in the interaction of APN with the spike glycoprotein. The most dramatic change caused by these mutations is the introduction of a potential N-linked glycosylation sequon at amino acids 291 to 293.

To assess the consequence of the introduction of the glycosylation signal at N291, two new mutants generated from p6-hAPN that revert N291E or T293Q but contain five other amino acid changes were tested (Fig. 8). The two single amino acid revertants that eliminate the glycosylation signal regain receptor activity for HCoV-229E. Additionally, pAPN also has amino acid differences from hAPN at D288, K292, Q293, and S295, suggesting that the block in receptor activity by the substitution of six amino acids in hAPN to those of pAPN is due to glycosylation of N291 rather than the individual amino acid substitutions (Fig. 8). Some of the amino acids in p6-hAPN/N291E and p6-hAPN/T293Q have different properties from those of hAPN. For example, there are side chain structural differences (Y289S) and conversion of basic amino acids to acidic amino acids (K292E). These observations suggest that S of HCoV-229E may not interact directly with any of amino acids 288 to 295 of hAPN, except perhaps V290 or A294 that are conserved in hAPN, pAPN, and fAPN proteins. Given this information one might predict that the removal of the glycosylation sequon N286–288 in pAPN would convert this protein into a functional receptor for HCoV-229E and TGEV. However, previous studies showed that when this glycosylation sequon in pAPN was removed (plasmids AP36 and AP37) changing three or one amino acid(s) of pAPN, respectively, the resulting proteins maintained TGEV receptor activity but did not gain receptor activity for HCoV-229E (33). Thus, in the context of hAPN, glycosylation of N286 blocks infection by HCoV-229E, but the removal of the analogous glycosylation site from pAPN does not convert it into a functional HCoV-229E receptor. This shows that glycosylation of pAPN at N296 is not the only block of HCoV-229E receptor activity in pAPN.

A new set of hAPN expression plasmids was generated to demonstrate that glycosylation of N291 of hAPN is the key block of receptor function of p6-hAPN. The mutants used have substitutions that encode the glycosylation sequon (hAPN/N291KT) and two revertants that restore N291E (hAPN/E291KT) or T293Q (hAPN/N291KO) and remove the glycosylation signal (Fig. 8). Immunoblots of cell lysates from the CMT93 cell lines and virus titration of supernatants after inoculation show no evidence of HCoV-229E receptor activity from either the hAPN/N291KT cell line or the p6-hAPN cell line. Additionally, the data from virus binding experiments using wild-type hAPN, p6-hAPN, hAPN/N291KT and the revertants hAPN/E291KT or hAPN/N291KO demonstrate that glycosylation of N291 blocks receptor activity by directly inhibiting virus-receptor interaction. However, IFA shows a small difference when the inoculum is incubated with the cell lines for 20 h. IFA of p6-hAPN cell lines directly correlates with immunoblot and virus titration data and shows no HCoV-229E receptor activity. In contrast, IFA data from hAPN/N291KT cell lines show a few HCoV-229E positive cells. The few infected cells likely result from incomplete N291 glycosylation of hAPN. Glycosylation of asparagine residues is more complex than a minimal NX(S/T) sequon. The specific amino acids in the X position that follow the S/T position and the cell type dramatically influence complete glycosylation of the protein (20, 24, 28, 49). The sequence of this mutant hAPN protein is N291KTA, and the sequence of p6-hAPN is N291ETA. The
effects of K or E in the second position are not well understood. However, the presence of the threonine residue in the third position confers strong glycosylation properties to rabies virus glycoprotein, as well as 38 other characterized glycoproteins, and minimizes the effect of the amino acid in the second position, with the exception of proline (28). Other studies with rabies virus glycoprotein show that the NLTA sequon is efficiently glycosylated, demonstrating that alanine in the fourth position, as in hAPN/N291KT, does not inhibit glycosylation (49). Our data suggest that the amino acids surrounding the p6-hAPN glycosylation sequon confer more efficient asparagine glycosylation than that of hAPN/N291KT. Alternatively, the amino acid changes that accompany p6-hAPN may be synergistic to the effect of glycosylation, although they do not change spike-receptor interaction enough to completely block receptor activity in the glycosylation revertants p6-hAPN/N291E and p6-hAPN/T293Q. If this were the case, then we would expect to see some reduction in receptor activity of p6-hAPN/N291E and p6-hAPN/T293Q. Yet, similar levels of infectious virus and viral proteins (N and S) are produced from cells expressing wild-type hAPN, p6-hAPN/N291E, and p6-hAPN/T293Q.

Glycosylation of cellular receptors also inhibits infection by reticuloendotheliosis virus, B-lymphotropic papovaviruses and MuLVs (17, 30, 37). The virus receptor interaction that is most analogous to APN and HCoV-229E S is that of the MuLV ecotropic retroviruses. MuLVs are subgrouped into five different categories based on receptor interference characteristics and host range. Ecotropic MuLVs infect rodent cells but not human cells, while amphotropic MuLVs infect cells of rodents and primates. The murine transporter for cationic amino acids (CAT-1) is the cell surface receptor for ecotropic MuLVs (32, 73). CAT-1 expressed by Mus dunni tail fibroblasts is a functional receptor for all ecotropic MuLVs except Moloney-MuLV. However, the removal of the N-linked glycosylation sequon at amino acids 229 to 231 of M. dunni tail fibroblast CAT-1 converts the glycoprotein into a functional receptor for all ecotropic viruses, including Moloney MuLV (17). This is also illustrated by a 220-fold increase in transduction efficiency of an ecotropic MuLV vector upon inhibition of cellular glycosylation (70). Furthermore, N-linked glycosylation of hamster CAT-1 protein inhibits its receptor activity for ecotropic MuLVs and contributes to the resistance of hamsters to these viruses (17, 74, 75). This is very similar to our observations with the substitution of a glycosylation sequon encoded by pAPN into hAPN that blocks HCoV-229E receptor activity. The spike of TGEV likely evolved to use its cognate receptor that contains this glycosylation site in a manner similar to that seen by MuLV strain PVC-211, which is a neurotropic variant of Friend MuLV that has an expanded host range because of changes in the env gene (46).

We also evaluated the ability of the mutant hAPN proteins to serve as receptors for TGEV. Our initial prediction was that none of the substitutions from 288 to 295 would confer TGEV receptor activity because the previous hAPN-pAPN chimeras had demonstrated that a region much closer to the carboxyl terminus of APN is required for TGEV entry (9). It is possible that these two regions of APN that are separated by more than 400 amino acids are close together in the three-dimensional structure of APN, and evidence of FIPV receptor function by an hAPN-pAPN (AP33) chimera suggests that it is likely (33). Additionally, it is possible that the N-linked glycosylation site that blocks receptor activity for HCoV-229E may enhance TGEV receptor function as is true for measles virus and CD46 (26, 43, 44). However, none of the hAPN constructs with mutations from amino acids 288 to 295 showed any receptor activity for TGEV.

We also identified other potential glycosylation sites in hAPN that are not conserved in pAPN or IAPN in the region previously shown to be a critical determinant of receptor activity for porcine, feline, and canine viruses (amino acids 670 to 840). Glycosylation of hAPN in this region may block porcine and feline viruses in the same manner that glycosylation of N°291 blocks HCoV-229E. A potential glycosylation sequon from amino acids 818 to 820 of hAPN that is not conserved in pAPN or fAPN was identified, and mutant expression plasmids that no longer have this glycosylation sequon were generated from hAPN or p6-hAPN. hAPN/N818E, a mutant that has a glycosylation pattern more similar to fAPN, has receptor activity for HCoV-229E but not TGEV or FCoV. p6-hAPN/N818E, a mutant that has a glycosylation pattern more similar to pAPN, lacks receptor activity for HCoV-229E, TGEV, and FCoV. Thus, it appears glycosylation of APN is not the sole discriminator of the species specificity in the serogroup 1 coronaviruses. All of the data on the differences observed between hAPN and pAPN from amino acids 717 to 813 of pAPN illustrate that none of the amino acid changes made individually or in combination convert hAPN into a functional receptor for TGEV (9). Thus, simultaneous amino acid substitutions and glycosylation changes may be required for hAPN to function as a receptor for porcine and feline coronaviruses.

In this study we see how expression of the glycosylation signal, normally present in pAPN, blocks infection in LAPN, and the other studies mentioned demonstrate how glycans add to receptors may aid or inhibit interaction with virus. Thus, species-, tissue-, and cell-specific glycosylation of receptors may play a role in tropism in vivo. We believe that glycosylation of amino acid 291 of hAPN blocks the interaction of HCoV-229E spike glycoprotein with a region of hAPN outside of amino acids 288 to 295 and that the region the virus binds to is conserved among APN glycoproteins of many species. It is...
likely that the progenitor of all serogroup 1 coronaviruses bound APN in this conserved region. As APN glycoproteins evolved in different species, the viral spike glycoproteins evolved to use certain receptors more efficiently and in doing so became more species specific.

ACKNOWLEDGMENTS

We thank Pierre Talbot for the anti-spike MAb 5-11H.6, Justin Hagee for his technical assistance, Karen Helm for FACS analysis at the University of Colorado Cancer Center Flow Cytometry Core, and Christopher Korch for sequencing the DNA samples at the University of Colorado Cancer Center DNA Sequencing and Analysis Core Facility. We also thank Bruce Zeiss, Diana Blau, Ken Tyler, and Bruce Banfield for critiques of the manuscript.

This work was supported by NIH grant AI26075, and D.E.W. was supported by NIH Neurovirology-Molecular Biology Training Grant T32 NS07321. FACs analysis at the University of Colorado Cancer Center Flow Cytometry Core was supported by NIH grant 2 P30 CA 46934-01, and sequencing of DNA samples at the University of Colorado Cancer Center DNA Sequencing and Analysis Core Facility was supported by an NIH/NCI Cancer Center Support grant (CA46934).

REFERENCES

41. Larsson, S., C. Soderberg-Naucler, and E. Moller. 1998. Productive cyto-
megalovirus (CMV) infection exclusively in CD13-positive peripheral blood
mononuclear cells from CMV-infected individuals: implications for preven-
plasia plasma membrane glycoprotein CD13 (gp150) is identical to ami-
G. Herrler. 1996. The N-glycan of the SCR 2 region is essential for mem-
brane cofactor protein (CD146) to function as a measles virus receptor. J.
Virology 70:4973–4977.
kinds of N-glycans can serve as measles virus receptor. Virology 210:478–481.
45. Manchester, M. J., E. Gairin, J. B. Patterson, J. Alvarez, M. K. Liszewska,
its receptor, CD146, via two distinct binding domains within SCR1-2. Virology
Analysis of the unique hamster cell tropism of ecotropic murine leukemia
47. Matrosovich, M., N. Zhou, Y. Kawaoka, and R. Webster. 1999. The surface
glycoproteins of H5 influenza viruses isolated from humans, chickens, and
wild aquatic birds have distinguishable properties. J. Virology 73:1146–1155.
1985. The metabolism of neutrophopes. Phase separation of synthetic mem-
brane preparations with Triton X-114 reveals the presence of aminopepti-
1998. The amino acid following an asn-X-Ser/Thr sequon is an important
determinant of N-linked core glycosylation efficiency. Biochemistry 37:6833–
6837.
functional characterization of aminopeptidase N expressed by human mel-
ation of the N- and O-linked glycosylation events and their implication in the
polarized sorting of intestinal brush border sucrose-isomaltase, aminopepti-
Kato, Y. Sakai, Y. Ohnishi, and Y. Nagai. 1998. Importance of the N-glycan in
the V3 loop of HIV-1 envelope protein for CXCR-4- but not CCR-5-
In A. J. Kenney and C. M. Boustead (ed.), Cell-surface peptides in health
and disease. BIOS Scientific Publishers, Oxford, United Kingdom.
Hinshaw. 1993. Antigenic and genetic analysis of a recently isolated H1N1
drate addition site on the hemagglutinin protein of a highly pathogenic H7
yrsiewicz. 1998. Human cytomegalovirus infection downregulates expression
58. Philpott, M. S., B. C. Easterday, and V. S. Hinshaw. 1989. Antigenic and
phenotypic variants of a virulent avian influenza virus selected during repli-
Talbot. 1997. CD4-independent infection by human immunodeficiency virus

Downloaded from http://jvi.asm.org/ on October 14, 2017 by guest