A Brome Mosaic Virus Intergenic RNA3 Replication Signal Functions with Viral Replication Protein 1a To Dramatically Stabilize RNA In Vivo

MICHAEL L. SULLIVAN1 AND PAUL AHLQUIST1,2*

Institute for Molecular Virology1 and Howard Hughes Medical Institute,2
University of Wisconsin—Madison, Madison, Wisconsin 53706

Received 9 October 1998/Accepted 23 December 1998

Brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, encodes two RNA replication proteins. The 1a protein has putative helicase and RNA-capping domains, whereas 2a contains a polymerase-like domain. Saccharomyces cerevisiae expressing 1a and 2a is capable of replicating a BMV RNA3 template produced by in vivo transcription of a DNA copy of RNA3. Although insufficient for RNA3 replication, the expression of 1a protein alone results in a dramatic and specific stabilization of the RNA3 template in yeast. As one step toward understanding 1a-induced stabilization of RNA3, the interactions involved, and its possible relation to RNA replication, we have identified the cis-acting sequences required for this effect. We find that 1a-induced stabilization is mediated by a 150- to 190-base segment of the RNA3 intergenic region corresponding to a previously identified enhancer of RNA3 replication. Moreover, this segment is sufficient to confer 1a-induced stability on a heterologous β-globin RNA. Within this intergenic segment, partial deletions that inhibited 1a-induced stabilization in yeast expressing 1a alone resulted in parallel decreases in the levels of negative- and positive-strand RNA3 replication products in yeast expressing 1a and 2a. In particular, a small deletion encompassing a motif corresponding to the box B element of RNA polymerase III promoters dramatically reduced the ability of RNAs to respond to 1a or 1a and 2a. These and other findings suggest that 1a-induced stabilization likely reflects an early template selection step in BMV RNA replication.

The alphavirus-like superfamily is a group of positive-strand RNA viruses that includes both animal and plant viruses (15). Although the members of this superfamily have different virion structures, hosts, and genome organizations, their nonstructural proteins have extensive similarity, suggesting common replication mechanisms. Brome mosaic virus (BMV), a member of the alphavirus-like superfamily, has a genome consisting of 5′-capped RNA1, RNA2, and RNA3 (for reviews, see references 1, 27 and 42). RNA1 and RNA2 encode the 1a and 2a proteins, respectively, which are required for RNA replication (12, 20, 22). The 109-kDa 1a protein has two major domains, one having sequence similarity to DEAD box helicases (16) and the other having similarity to alphavirus nsP1 proteins, which have been shown to have m7G methyltransferase and guanylyltransferase activities presumed to function in viral RNA capping (3, 28, 40). The 94-kDa 2a protein has sequence similarity to RNA-dependent RNA polymerases (5). In both plant cells (36) and yeast cells (35a) 1a and 2a colocalize in an endoplasmic reticulum-associated replication complex that is the site of BMV-specific RNA synthesis. RNA3 is a dicistronic RNA whose protein products are dispensable for RNA replication but required for productive infection (4). The 5′ gene encodes the 32-kDa 3a protein, which is essential for cell-to-cell movement of bromovirus infection (4, 30). The 3′ gene encodes the coat protein, which is required for encapsidation and long-range vascular spread of the virus (4, 29a, 38). The coat protein gene is expressed by synthesis of a subgenomic mRNA, RNA4, from the negative-strand RNA3 replication intermediate.

In vitro and in vivo studies have identified 5′, 3′, and intergenic sequences within RNA3 that are required for efficient RNA replication and subgenomic RNA synthesis (Fig. 1) (10, 11, 25, 29). The 250-base intergenic region plays an important role in both processes, containing the promoter for subgenomic mRNA synthesis and sequences involved in RNA3 replication (Fig. 1). While the conserved BMV tRNA-like 3′ end functions as a minimal negative-strand promoter in vitro (29), experiments with Saccharomyces cerevisiae expressing 1a, 2a, and RNA3 templates demonstrated that sequences within the intergenic region of RNA3 stimulate negative-strand synthesis in vivo approximately 100-fold (35). The same study showed that intergenic sequences play a role in vivo assembly of a functional, isotatable RNA replication complex. A 150- to 200-base subset of the intergenic region, the intergenic replication enhancer (IRE), was implicated in RNA replication in plant protoplasts (11). A striking feature of this segment is a motif matching the box B sequence of RNA polymerase III promoters and thus also the conserved TF/C loop of tRNAs (11, 26). Deletion of the box B element impairs RNA3 replication (34, 41). The same box B motif is also found in the 5′ noncoding regions of BMV RNA1 and RNA2 (11).

Recently, it has been shown that in yeast, in the absence of 2a and hence also of RNA replication, 1a dramatically and selectively increases the stability and accumulation of a DNA-derived RNA3 transcript (20). However, increased levels of RNA3 did not lead to increased RNA3 translation. These and other observations suggested that the 1a-RNA3 interaction leading to 1a-induced stabilization might be involved in directing RNA3 to replication rather than the potentially competing fates of translation, encapsidation, or degradation.

As one step toward understanding 1a-induced stabilization of RNA3, the interactions involved, and its possible relation to RNA replication, we have identified the cis-acting sequences
n RNA3 intergenic region mediates 1a-induced stability

required for this effect. We show here that 1a-induced stabilization is mediated by a 150- to 190-base segment of the RNA3 5′-proximal intergenic region corresponding to the IRE and that these sequences are sufficient to direct 1a-induced stabilization of heterologous RNAs. Partial intergenic deletions that inhibited 1a-induced stabilization in cis in yeast expressing 1a alone similarly inhibited in cis the accumulation of negative- and positive-strand RNA3 replication products in yeast expressing 1a and 2a, further supporting a close link between 1a-induced RNA3 stabilization and RNA3 replication.

Materials and Methods

Yeast strain, cell growth, and transformation. Yeast strain YPH500 (MATa ura3-52 lys2-801 ade2-101 tyr1-263 his3-D200 leu2-D1) was used throughout. Yeast cultures were grown at 30°C in defined synthetic medium containing 2% glucose or 2% galactose (6). Relevant amino acids were omitted to maintain selection for any plasmids present. Plasmid transformation was by the LiAc-polyethylene glycol method (19).

Plasmids and plasmid constructions. Standard procedures were used for all DNA manipulations (39). The sequences of PCR-generated DNA fragments were confirmed by automated DNA sequencing, and the overall structures of all plasmids were confirmed by restriction analysis.

The 1a expression cassette of pBS179 (21) (ADH1 promoter-1a open reading frame [ORF]-ADH1 polyadenylation signal) was inserted into the EcoRV site of pRS423, a yeast 2μ plasmid, which was transformed into the yeast strain BY4741. All plasmids expressing RNAs tested for 1a-induced stabilization were based on the pRS423 plasmid backbone. The plasmids containing the 1a ORF were generated by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment of pB3B (5′-3′ RNA3) is similar to pRS636 except that it is a 1.0-kb BamHI fragment (T4 DNA polymerase-treated)-BamHI fragment from pB3 containing the RNA3 coat protein ORF, RNA3 3′ untranslated region (UR), and hepatitis delta ribozyme (4).

Intermediate plasmids. Several intermediate plasmids facilitated construction of plasmids expressing RNA3 derivatives. pGP948, a pBluescript II SK(+) (Stratagene) derivative whose polycluster has been modified to SacI-Blgl-XbaI-EcoRV-BamHI-ClaI, and pGP977, which contains a human β-globin ORF (31), were the generous gifts of Pam Green. pB3TP10 is a BamHI clone with BamHI and BglII sites introduced by site-directed mutagenesis immediately preceding and following the 3a ORF, respectively (32).

RNA3 plasmids. RNA3 plasmid pB3 (laboratory designation, pB3RQ39) (18) and a number of RNA3 deletions were generated with the reverse primer (see above) and d(AACAGGATCCATATCACACTAGCA) (TGTTTTGTTATAGTAAGTC). The resulting fragments were then ligated and reamplified with the T7 and reverse primers.

RNA3 deletion plasmids. pB3Δ3′ (in vivo transcription plasmid for ShRNA3; laboratory designation, pBSM513) is a 1.0-kb BglII-BamHI deletion derivative of pB3 that removes all RNA3 sequences 3′ of the intergenic oligo(A) tract through the hepatitis delta ribozyme. pBSM63 (3′-RNA3) has a 1.0-kb BglII fragment (T4 DNA polymerase-treated)-BamHI fragment from pB3 containing the RNA3 coat protein ORF, RNA3 3′ untranslated region (UR), and hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3. pBSM89 (6′-3′ RNA3) is similar to pBSM63 except that it is a second 3′-frame ATG has been replaced by ATC by replacing the SalI-BglII fragment in the coat ORF with the complementary synthetic oligonucleotides (dCAGCTACTCGAGGA CATCAGCGAAGTCT) and d(GGATCCTGCGGATCCCGTTCTCG) (RNA3 AGA) and (ii) a frameshift mutation was introduced by digestion with Sall, treatment with T4 DNA polymerase, and religation. pBSM60 (5′-RNA3) was made by replacing the 1.0-kb BglII-BamHI fragment of pB3 with the 0.5-kb BamHI fragment of pB3B. pBSM595 (RNA31Ar) was generated by replacing the 0.6-kb Sali-BglII fragment of pB3 with the 0.4-kb ClaI-BglII fragment from pB3TP10, removing most of the intergenic region from RNA3. pBSM45 (Δ1Ar) was generated by replacing the 1.0-kb BglII-BamHI fragment of pB3 with the 0.5-kb BamHI fragment of pB3B. pBSM95 (RNA31Ar,B) was generated by replacing the 2.2-kb BamHI fragment of pB3 with the 0.2-kb BglII-BamHI fragment of pIR by insertion of the 0.5-kb BglII-BamHI fragment of pADH1 into the BamHI site of the resulting plasmid.

RNA3 deletion plasmids. RNA3 deletion plasmids were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment of pB3B. pBSM46 (RNA3Ar) was generated by replacing the 2.2-kb BamHI fragment of pIR by insertion of the 0.5-kb BglII-BamHI fragment of pADH1 into the BamHI site of the resulting plasmid.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.

β-Globin plasmids. pMS72 (RNA3-IR3) and pMS73 (RNA3+IR3) were made by replacing the 2.2-kb BamHI fragment of pB3 with the 0.5-kb BamHI fragment from pBSB (5′-3′ RNA3) was inserted into the EcoRV site of pB3 containing the hepatitis delta ribozyme releasing the 2.2-kb BamHI fragment of pB3.
FIG. 2. 1a-induced stabilization of RNA3 and a 3'-truncated RNA3 derivative. Plasmids expressing cDNA corresponding to full-length RNA3 or a truncated derivative were cotransformed into yeast with either a 1a-expressing plasmid or the corresponding empty vector, pRS423. The resulting yeast strains were analyzed as described in Materials and Methods. (A) The schematic at the top depicts the RNA3 expression cassette and its resulting full-length (FL) and short (Sh) transcripts. Relevant features of the RNA3 cDNA and the flanking GAL1 promoter and ribozyme sequences are indicated. After galactose induction of the GAL1 promoter, total RNA from yeast containing this plasmid was fractionated on oligo(dT) beads. Total (5 mg) (T), poly(A)-enriched (0.5 mg) (A'), and poly(A)-depleted (5 mg) (A') RNA fractions were electrophoresed on an agarose-formaldehyde gel, transferred to a nylon membrane, and hybridized to a 32P-labeled DNA probe complementary to the entire RNA3 cDNA (lower left). RNA stability in the absence (−1a) or presence (+1a) of 1a was assessed by glucose repression of RNA3 transcription. Equal amounts of RNA prepared from yeast harvested at the indicated times following glucose repression were analyzed by Northern blotting and hybridization as described above. A representative Northern blot is shown on the lower right. (B) The schematic at the top shows an RNA3 expression cassette, lacking sequences 3' of the RNA3 IR_, and the transcript resulting from this cassette. The stability of this transcript in the absence (−1a) and presence (+1a) of 1a was assessed as described above. A representative Northern blot is shown below. (C) Radioactive signals from three to seven stability analyses of the RNAs depicted in panels A and B were measured with a PhosphorImager, normalized to starting RNA levels (100%), and plotted with error bars on a logarithmic scale versus time. Stability in the presence (+1a) or absence (−1a) of 1a is plotted with solid symbols and solid lines or open symbols and dashed lines, respectively. The error bars represent standard errors of the mean and are included for all points, but in some cases they are obscured by the symbols used to plot the average values.

Because the existence of a shortened form of RNA3 had potentially significant implications for this and many other studies utilizing pB3 derivatives, we further characterized this RNA. We found that the short RNA depended on galactose-induced, DNA-dependent transcription of pB3 but not on expression of the BMV 1a or 2a protein. Also, the short RNA was absent when a selectable RNA3 replicon (18, 21) was maintained by RNA replication in the absence of ongoing pB3 transcription. Thus, the short RNA was not a product of BMV RNA replication but of in vivo transcription of RNA3 cDNA. Moreover, probes complementary to the 3a ORF or IR_ detected the short transcript whereas a probe complementary to the coat protein ORF did not.

From these results and studies showing that a variety of AU-rich sequences function as mRNA polyadenylation signals in yeast (17), we suspected that the short transcript was initiated by the GAL1 promoter but was terminated and polyadenylated in the AU-rich IR_. This was tested in two ways. First, total RNA isolated from galactose-induced, pB3-containing yeast was fractionated with oligo(dT) paramagnetic beads into poly(A)-enriched and -depleted fractions (Fig. 2A, bottom left panel). Despite an 18-base oligo(A) tract in the intergenic subgenomic RNA promoter (Fig. 1) (10), full-length RNA3 was not recovered in the poly(A)-enriched fraction, remaining instead in the poly(A)-depleted fraction. In contrast, the short transcript was greatly enriched in the poly(A) fraction, indi-
FIG. 3. RNA3 sequences 3' of the intergenic oligo(A) tract do not direct 1a-induced RNA stabilization. DNA expression cassettes for 3’RNA3, which lacks RNA3 sequences 5' of and including the intergenic oligo(A) tract, and fs-3’RNA3, a frameshifted version of 3’RNA3 that does not produce coat protein, are diagrammed at top left. The stabilities of these RNAs in the absence (−1a) and presence (+1a) of 1a were analyzed by glucose repression as described in the legend to Fig. 2, and representative Northern blots are shown at the right. The results for full-length RNA3 are shown for comparison. The results of three independent stability analyses of each RNA were averaged and plotted with error bars, as in Fig. 2.

cating that it possessed a poly(A) tail long enough to interact efficiently with the oligo(dT) beads and longer or more accessible than that in the intergenic region of full-length RNA3. Second, RNA3 sequences 3' of the intergenic oligo(A) tract and the 3' flanking ribozyme were deleted from pB3. As expected, the resulting plasmid, pB3Δ3', produced a defined transcript that comigrated with the pB3 short transcript, despite the absence of an explicit 3' polyadenylation signal or ribozyme (Fig. 2B).

Next, the in vivo stability of the short transcript was determined in the presence and absence of 1a. The in vivo stability of RNA3 transcribed from pB3 and its derivatives can be measured by rapidly repressing the GAL1 promoter with glucose and monitoring surviving RNA levels by Northern blotting. The RNA half-life (t_{1/2}) can be determined from the slope of a plot of the surviving RNA level on a logarithmic scale against time after transcription repression. The results of such half-life analyses were highly reproducible. For each RNA stability test described in this paper, three to seven independent experiments were performed and averaged to generate the illustrated decay curves with standard error bars.

As shown in Fig. 2, the short RNAs derived from pB3 and pB3Δ3' were indistinguishable in stability analyses and showed 1a-responsive behavior similar to that of full-length RNA3. In the absence of 1a, all three RNAs decayed rapidly, with an initial t_{1/2} of 8 to 9 min. For the short transcripts, this decay rate remained nearly constant through the period examined, so that only a few percent of the starting RNA survived after 60 min. For full-length RNA3, decay slowed after 80 to 90% of the initial full-length RNA3 had decayed. Similar prolonged survival of 10 to 20% of the starting RNA after 60 min has been seen for all BMV and hybrid RNAs containing the BMV tRNA-like 3' end, which apparently stabilizes a small subpopulation of RNA even in the absence of 1a (Fig. 3 and 4) (7a).

In the presence of 1a, full-length RNA3 and both short transcripts were highly stabilized, with half-lives of >60 min (i.e., with 55 to 70% of the starting RNA level surviving after 60 min [Fig. 2C]). It should be noted that for these extremely long-lived RNAs, this assay actually underestimates stability, as continued cell growth during the course of the assay (20 to 25% increase in cell numbers) causes a corresponding decrease in RNA levels independent of decay. Consistent with their enhanced stability, these RNAs accumulated to three- to sixfold-higher levels in the presence of 1a (Fig. 2A and B). Thus, the short transcript contained cis-acting sequences sufficient for full 1a-induced stabilization.

RNA3 coat gene and 3' UTR do not support 1a-induced RNA stabilization. To test whether the 3' portion of RNA3 contained similar 1a-responsive signals, a plasmid expressing RNA3 sequences 3' of the intergenic oligo(A) tract was made (Fig. 3). In yeast, the resulting transcript, 3’RNA3, was highly stable both in the presence and absence of 1a, with virtually no decay detected 60 min following transcription repression (Fig. 3). The high, 1a-independent stability of 3’RNA3 appeared likely to be due to interaction with coat protein, since expression of BMV coat protein stabilizes RNA4 and a number of other BMV-derived RNAs in yeast (23), and immunoblot analysis confirmed that 3’RNA3 expresses coat protein in yeast (data not shown). To block coat protein synthesis, a four-base frameshifting insertion was introduced immediately after the coat protein initiation codon (Fig. 3, fs-3’RNA3). In the same RNA, the second in-frame AUG (at coat protein codon 9) was mutated to AUC to preclude reinitiation of translation, which could lead to production of a functional, N-terminally truncated coat protein (38). These mutations prevent coat protein production while minimizing changes in the RNA itself. As expected, yeast transcribing fs-3’RNA3 failed to produce coat protein, as assessed by immunoblotting (data not shown).

Unlike 3’RNA3 or wild-type RNA3, fs-3’RNA3 decayed rapidly in either the absence or presence of 1a (Fig. 3). In the absence of 1a, its decay was nearly identical to that of full-length RNA3: i.e., most of the RNA decayed with an initial t_{1/2} of ~5 min, followed by slower decay of the remaining 10 to 20%. In the presence of 1a, fs-3’RNA3 showed no detectable increase in steady-state accumulation, one of the hallmarks of 1a’s effect on full-length RNA3 and Sh RNA3 (Fig. 2, compare

\[1/a^2 \text{ of } 60 \text{ min} \]
0-min time points with those in Fig. 3 [Northern blots]. Careful measurement revealed a slight elevation of approximately 5% in the fs-3′RNA3 decay curve in the presence of 1a versus that in the absence of 1a (Fig. 3, right-hand graph; note that the logarithmic scale exaggerates the magnitude of effects in the lower part of the graph). However, a similar, low-level response to 1a has also been observed for all nonviral transcripts analyzed to date (Fig. 5) (see Discussion). Thus, in contrast to the selective high-level stabilization of wild-type RNA3 by 1a, the slight reduction in the fs-3′RNA3 decay rate appears to represent a low-level, sequence-nonspecific effect of 1a on RNAs in general.

An intergenic segment is the major determinant of 1a-induced stabilization of RNA3. The results described above showed that the short transcript shown in Fig. 2, consisting of the 5′ half of RNA3, contained signals that were necessary and sufficient for 1a-induced stabilization. Accordingly, we made and tested deletions of the three major segments of this RNA, i.e., the 5′ UTR, 3a ORF, and IRₐ (Fig. 4A). To provide a starting point for these deletions, the plasmid shown in Fig. 2B was modified by adding the yeast ADH₁ gene polyadenylation signal immediately following IRₐ (Fig. 4A, 5′RNA₃). The explicit ADH₁ polyadenylation signal was added to provide a common 3′ end to all deletion variants in this series, since our further experiments had shown that self-directed 3′ end formation from the fortuitous polyadenylation site in IRₐ depended on sequences in IRₐ and flanking portions of the 3a ORF. As expected, the starting plasmid and its derivative lacking the 5′ UTR each produced two major transcripts in yeast: a shorter transcript resulting from the fortuitous polyadenylation signal in IRₐ and a longer transcript resulting from the ADH₁ 3′ polyadenylation site. No significant differences in stability were seen between the longer ADH₁-terminated and shorter self-terminated transcripts (Fig. 4A and data not shown). Consequently, the longer, ADH₁-derived RNAs from these 5′RNA₃ and Δ5′UTR plasmids were used for comparison to the single major ADH₁-derived RNAs of Δ₃a, ΔIRₐ, and Δ5′UTRΔ₃a.

In the absence of 1a, all of the RNAs shown in Fig. 4A decayed rapidly, with near-first-order kinetics and half-lives of 3 to 4 min. In the presence of 1a, 5′RNA₃ accumulated to approximately 2.5-fold-higher levels than in its absence and was markedly stabilized, with a half-life of approximately 50 min.

Deleting the 3a ORF (Δ₃a) resulted in an RNA whose 1a-responsive behavior was indistinguishable from that of 5′RNA₃ (Fig. 4A). Deleting IRₐ (ΔIRₐ) resulted in an RNA that neither accumulated to higher levels nor showed significant stabilization in the presence of 1a (t₁/₂ ≈ 3 min). Thus, in the context of the 5′ half of RNA3, IRₐ plays a vital role in 1a-dependent stabilization. Deleting the 5′ UTR, alone or in combination with the 3a ORF, resulted in an intermediate level of 1a responsiveness: the resulting RNAs (Δ₅′UTR and Δ₅′UTRΔ₃a) decayed much more slowly in the presence of 1a than in its absence but more rapidly than 5′RNA₃ in the presence of 1a. While this shows that 5′ untranslated
sequences can facilitate 1a-induced stabilization, experiments described below show that this effect does not depend on specific viral sequences.

The role of IR$_A$ in 1a stimulation of RNA3 stability and accumulation was further tested by IR$_A$ deletion from full-length RNA3 (RNA3IR$_A$). As shown by the Northern blots in Fig. 4B, IR$_A$ deletion largely abolished RNA3 responsiveness to 1a. While 1a increased wild-type RNA3 accumulation up to sixfold, the data in Fig. 4B and independent repetitions of this experiment showed that the accumulation of RNA3IR$_A$ in galactose-induced yeast was unchanged in the presence and absence of 1a. Moreover, after glucose inhibition of GAL1-promoted transcription, RNA3IR$_A$ decay in either the presence or absence of 1a was rapid relative to that of wild-type RNA3 plus 1a. As illustrated by the graphs in Fig. 4B, the average residual amount of RNA3ΔIR$_A$ persisting 60 min after transcription repression increased slightly in the presence of 1a. However, this increase was similar in magnitude to the nonspecific effects of 1a on nonviral RNAs (Fig. 5, Northern blots) (see Discussion), the amount of RNA3IR$_A$ surviving was extremely small compared to the amount of RNA3 stabilized by 1a (Fig. 4B, compare 60-min time points in Northern blots), and the decay curve of RNA3ΔIR$_A$ even in the presence of 1a was similar to that of wild-type RNA3 minus 1a.

An RNA3 intergenic segment confers 1a-induced stabilization on a heterologous RNA. To further assess which RNA3 sequences were required for 1a-induced stabilization, we tested several chimeric RNAs containing a human β-globin ORF (31) followed by IR$_A$ and the yeast ADH1 polyadenylation signal (Fig. 5). A parallel set of chimeric RNAs lacking IR$_A$ was also tested. Because the deletions shown in Fig. 4A showed that loss of the 5' UTR partially inhibited 1a-induced stabilization, a possible sequence-specific role of the RNA3 5' UTR was tested by comparing four pairs of β-globin hybrids. Three pairs of hybrids had 5' UTRs from RNA3 or two yeast genes, GAL1 and PGK. The fourth pair of hybrids had only six nucleotides preceding the β-globin initiator AUG and thus lacked a functional 5' leader for this ORF (see Discussion). The stability of all of these RNAs was assessed in vivo in the absence and presence of 1a.

In the absence of 1a, all of the hybrid RNAs decayed rapidly, with half-lives of 3 to 6 min (Fig. 5). In the presence of 1a, all of the hybrid RNAs lacking IR$_A$ sequences also decayed rapidly, with half-lives of 3 to 4 min (Fig. 5, Northern blots and upper plot). However, 1a did result in a slight but consistent increase in the residual amount of RNA remaining 60 min following transcription repression. This was true not only for the β-globin RNA containing the RNA3 5' UTR but also for those containing the GAL1 or PGK 5' UTRs, or no explicit 5' UTR, and thus lacking viral sequences entirely. We have detected similar low-level responses to 1a by every RNA tested in this manner, including hybrid GUS (β-glucuronidase) RNAs lacking viral sequences (data not shown). Thus, 1a exerts a low-level, sequence-nonspecific effect on RNAs in general.

In contrast to this low-level, nonspecific response, all of the hybrid RNAs containing IR$_A$ sequences and explicit 5' UTRs were dramatically stabilized in the presence of 1a, with >50% of the RNA persisting 1 h following transcriptional repression (Fig. 5, Northern blots and lower plot). Also, prior to repression of transcription, these RNAs accumulated to greater than twofold-higher levels in the presence of 1a than in its absence. No significant differences were observable between 1a-induced stabilizations of hybrid RNAs with RNA3 or GAL1 5' UTRs, and only a minor reduction in stability was seen with the PGK 5' UTR. A hybrid RNA lacking an explicit 5' UTR exhibited 1a-responsive behavior comparable to that of the Δ5'UTR and Δ5'UTRΔ3a RNAs (Fig. 4), i.e., 1a-induced stabilization was evident but reduced compared to that of RNAs containing explicit 5' UTRs. Similar results were obtained with a parallel set of hybrid RNAs containing the GUS ORF in place of the β-globin ORF (data not shown). Thus, the RNA3 IR$_A$ is sufficient to confer 1a-dependent stabilization on a heterologous, nonviral RNA. Moreover, although the presence of an explicit
5′ UTR enhances stabilization, there is no requirement for specific RNA3 sequences in the 5′ UTR.

Identification of sequences within the RNA3 intergenic region required for 1a-induced stabilization. As shown above, a β-globin mRNA with the GAL1 5′ UTR and BMV IRₐ (Fig. 5, GAL+IRₐ) was as responsive to stabilization by 1a as wild-type RNA3. Accordingly, we used this context to further explore the boundaries of contributing IRₐ sequences in the absence of any other RNA3 sequences, which conceivably could confuse the analysis by providing redundant functions or other effects.

The stability of β-globin-IRₐ reporter RNAs containing partial IRₐ deletions was assessed in yeast lacking or expressing 1a (Fig. 6). In the absence of 1a, all of these RNAs were short lived, with half-lives of 3 to 5 min. In the presence of 1a, partial deletions from the 5′ side of IRₐ showed graded effects. An RNA lacking the 5′ 32 bases of IRₐ was stabilized by 1a at a significant level, but lower than that of the hybrid bearing the full IRₐ; i.e., 24 rather than 67% of the transcript persisted 1 h after transcriptional repression (Fig. 6, upper decay plot). Deletion of 45 and 79 bases from the 5′ end of IRₐ resulted in

![Diagram](image-url)
RNAs which showed only slight or no stabilization, respectively, by 1a. At the 3' end of IR A, deletion of the oligo(A) tract had no effect on 1a-induced stabilization (Fig. 6, middle decay plot). Extending this deletion to 52 bases from the IRA 3' end had a modest but discernible inhibitory effect on the ability of the RNA to be stabilized by 1a (37% of the RNA persisted 1 h after transcriptional repression). Deletion of 73 bases from the IRA 3' end resulted in an RNA that showed little if any stabilization by 1a. Thus, sequences contributing minimal 1a responsiveness are encompassed within a 125- to 150-base region of IRA (from bases 1043 to 1168 of RNA3) while full 1a responsiveness requires additional flanking sequences (within bases 1012 to 1200 of RNA3).

The IRA segment required for 1a responsiveness contains an 11-base motif corresponding to the box B element of RNA polymerase III promoters and thus also to the conserved TCC loop of tRNAs. Deleting this motif severely inhibits RNA3 replication (34, 41). To test whether this motif is required for 1a-induced stabilization, a 14-base region containing the box B motif and flanking 3' pyrimidine residues conserved with the 5' box B regions of BMV RNA1 and RNA2 (11) was deleted from the hybrid β-globin-IRA RNA (ΔBoxB). In the absence of 1a, the ΔBoxB RNA decayed comparably to the other tested β-globin RNAs (t½ ≈ 5 min). In the presence of 1a, the ΔBoxB RNA was only slightly more stable than in its absence and strikingly less stable than a reporter RNA containing the intact IRA (Fig. 6, lower decay plot). Thus, the box B element appears to play a major role in 1a-induced stabilization.

Sequences required for 1a-induced stabilization are also required for RNA3 replication. The approximately 150-base IRA segment defined above as required for 1a-induced stabilization of β-globin corresponds well to an intergenic segment previously defined as important for RNA3 replication in plant protoplasts, the IRE (11). To determine whether the IRA sequences responsible for 1a-induced stabilization are similarly required for RNA3 replication in yeast, all partial IRA deletions (Fig. 6) were engineered into full-length RNA3 (Fig. 7). Since this introduced some polylinker sequences flanking IRA, a reconstructed RNA3 containing the same extra bases was used as a positive control (rWT). The 1α-stimulated increase in steady-state RNA3 accumulation under continuous galactose induction of GAL1-promoted RNA3 transcription, an easily measured indicator of 1α-induced stabilization, was deter-

FIG. 7. Effect of IR A deletions on RNA3 replication in yeast. The partial IRA deletions shown in Fig. 6 were engineered into RNA3. A general diagram of the DNA expression cassettes used to generate the RNAs is shown, with GAL1 promoter, RNA3, and ribozyme sequences indicated. A detailed expansion of IRA, including the box B motif and oligo(A) tract, is shown below, with numbering corresponding to the base position in RNA3. For each RNA3 derivative, the extent of IRA deletion is shown by a dashed line on an IRA schematic at the left. rWT is a reconstructed RNA3 that contains extra polylinker sequences flanking IRA that are present in all the deletion derivatives. To measure 1α-stimulated RNA3 accumulation, plasmids expressing the indicated IRA3 derivatives were cotransformed into yeast with either a 1α-expressing plasmid or the corresponding empty vector, pRS423. Equal amounts of total RNA prepared from the resulting galactose-induced yeast were analyzed by Northern blotting with a 32P-labeled DNA probe complementary to the entire RNA3 cDNA. Radioactive signals corresponding to each RNA3 derivative in the absence or presence of 1α were measured with a PhosphorImager. Two to three independent transformants were analyzed for each RNA3 derivative in the presence and absence of 1α. 1α-stimulated RNA3 accumulation is shown as the fold increase in accumulation in the presence of 1α versus that in its absence. To assay RNA replication, plasmids expressing the indicated IRA3 derivatives were cotransformed with 1α- and 2α-expressing plasmids. Equal amounts of total RNA prepared from the resulting galactose-induced yeast were analyzed by Northern blotting with a single-stranded, 32P-labeled RNA probe complementary to either negative- or positive-strand RNA3, as indicated. Representative Northern blots are shown, with the migration positions of RNA3 and RNA4 indicated. Positive- and negative-strand RNA3 accumulation was quantified for three independent transformants of each RNA3 derivative and averaged and is presented as a percentage of rWT accumulation ± standard error of the mean.
A subset of RNA3 intergenic sequences directs 1a-induced stabilization. Using a combination of deletion- and gain-of-function analyses, we have shown here that a 150- to 190-base, 5′-proximal portion of the RNA3 intergenic region is necessary and sufficient for the dramatic increase in RNA3 stability induced by the BMV 1a RNA replication protein. All RNA3 derivatives containing this region were strongly stimulated in stability and accumulation by 1a expression, while any RNA3 derivatives lacking this region showed only low-level, nonspecific responses to 1a. Moreover, transfer of the same intergenic sequences to foreign RNAs containing the β-globin or GUS ORFs rendered these RNAs similarly responsive to 1a.

DISCUSSION

A subset of RNA3 intergenic sequences directs 1a-induced stabilization. Using a combination of deletion- and gain-of-function analyses, we have shown here that a 150- to 190-base, 5′-proximal portion of the RNA3 intergenic region is necessary and sufficient for the dramatic increase in RNA3 stability induced by the BMV 1a RNA replication protein. All RNA3 derivatives containing this region were strongly stimulated in stability and accumulation by 1a expression, while any RNA3 derivatives lacking this region showed only low-level, nonspecific responses to 1a. Moreover, transfer of the same intergenic sequences to foreign RNAs containing the β-globin or GUS ORFs rendered these RNAs similarly responsive to 1a.

Our findings with chimeric β-globin RNAs were generally consistent with those obtained with RNA3s carrying comparable IR∆ deletions. However, two partial IR∆ deletions, 5′∆32 and 3′∆52, reduced 1a-induced stabilization of IR∆-containing β-globin RNAs, whereas in RNA3 these deletions resulted in stabilization to a level comparable to or slightly higher than that of wild-type RNA3 as well as parallel increases in accumulation of RNA3 replication products in yeast expressing both 1a and 2a. The difference in stabilization of β-globin and RNA3 derivatives could be due to some portion of RNA3 outside of IR∆ being able to compensate for these particular deletions from the 5′ and 3′ ends of the IR∆. It is perhaps not surprising that the ends of the minimal sequence required for 1a-induced stabilization are slightly different in the two contexts tested, especially if secondary structure, which could be influenced by flanking sequences, is important (see below). It should also be noted that in vivo transcription of RNA3 containing the 3′∆52 deletion failed to generate the truncated, 1a-stabilizable transcript (Sh RNA3 [Fig. 2]) that wild-type RNA3 sequences produce in yeast. If, as discussed below, 1a or some other factor is limiting for stabilization, then it would be expected that the absence of this potential competitor RNA would result in stabilization higher than that seen for wild-type RNA3. 3′∆53 also greatly reduced subgenomic mRNA synthesis, thus making more negative-strand RNA3 available for replication.

Relation of 1a-induced stabilization to RNA replication. Multiple results suggest that IR∆-mediated, 1a-induced stabilization of RNA3 is related to RNA3 replication. In addition to the well-established role of 1a as an essential RNA replication factor (12, 20, 22, 24), the intergenic element found here to direct 1a-induced RNA stabilization corresponds to the IRE, a crucial, 50- to 100-fold in vivo enhancer of RNA3 replication in plant cells (11) and in yeast (Fig. 7). The inhibitory and stimulatory effects of partial IR∆ deletions on 1a-dependent RNA3 stabilization correlated well with their effects on (1a plus 2a)-dependent RNA3 replication (Fig. 7). Even the two mutants that increased 1a-stimulated RNA3 accumulation above that of wild type (5′∆32 and 3′∆52) resulted in parallel increases in accumulation of positive- and negative-strand RNA3 replication products.

The role of the IRE as an enhancer of overall RNA3 replication might be solely the result of enhancing negative-strand synthesis, since sequences within IR∆ stimulate negative-strand RNA3 synthesis in vivo by 100-fold (35). Furthermore, sequence exchanges between BMV and a closely related bromovirus, cowpea chlorotic mottle virus, showed that the preference of BMV 1a and 2a for replicating BMV RNA3 over that of cowpea chlorotic mottle virus is controlled in trans by 1a (43) and in cis by the RNA3 intergenic region (32). Thus, independent results connect 1a with the RNA3 intergenic region in RNA replication and show that these elements are jointly involved in selecting RNA3 templates for replication. Consistent with a role in template selection prior to initiating negative-strand RNA synthesis, the 1a-IRE interaction underlying 1a-induced stabilization requires neither BMV 2a protein, which is essential for negative-strand RNA synthesis (20), nor, as shown here, the 3′-terminal RNA3 sequences that function as the negative-strand initiation site.

1a-induced RNA3 stabilization also inhibits RNA3 translation (20). As first suggested for bacteriophage Qb (44), inhibiting the translation of positive-strand viral RNAs could be a prerequisite for initiating negative-strand synthesis, to prevent ribosomes from blocking the opposing passage of viral polymerase. Thus, a combination of independent results suggest that direct or indirect interaction of 1a with the IRE may be...
involved in recruiting RNA3 templates into the replication complex for negative-strand synthesis while diverting them from the competing process of translation. Translation inhibition by 1a could be a significant factor in 1a-mediated RNA3 stabilization, since the degradation of many RNAs is also linked to their translation (33).

The role of the IRE in BMV RNA-dependent RNA synthesis may be formally similar to that of an enhancer element in DNA-dependent RNA synthesis: from a position distal to the initiation site, the IRE directs interaction of the template with one or more components of the RNA synthesis complex, thus facilitating subsequent recognition and initiation at the linked start site. Similar elements distal to the site of negative-strand initiation have been identified for bacteriophage Qβ (7) and recently for poliovirus (13). In parallel with the BMV RNA3 IRE, interaction of these distal sites with Qβ replicase and poliovirus 3CD protein, respectively, inhibit translation and promote negative-strand RNA synthesis.

Prior protoplast (11) and yeast (35) studies showed low (approximately 1 to 2% of wild-type) levels of negative-strand synthesis and RNA replication for RNA3 derivatives lacking intergenic region sequences. Our RNA replication results (Fig. 7) agree with these findings. The low template activity of RNA3 derivatives lacking the IRE might reflect a residual level of RNA replication in the absence of the 1a function(s) underlying 1a-induced RNA stabilization. However, we also find that 1a has a low-level, nonspecific effect on all RNAs tested, including nonviral RNAs (Fig. 5). Such low-level nonspecific effects might be expected if 1a or associated factors must interact with and scan the pool of cytoplasmic RNAs in search of appropriate templates. Thus, even inefficient IRE-independent RNA replication might proceed by a parallel, albeit nonspecific, interaction with 1a.

Role of box B element in 1a-dependent RNA3 stabilization and replication. 1a-induced RNA stabilization was severely impaired by a small deletion encompassing the central box B element of the IRE (Fig. 6). Mutation of the box B motif in the RNA3 IRE similarly reduces RNA3 replication in both yeast (Fig. 7) and plant cells (34, 41). This motif, which is also present in the 5′ UTRs of RNA1 and RNA2 (2), corresponds to box B of RNA polymerase III promoters and thus to the conserved TΨC loop of tRNAs (26). While our results do not show whether 1a interacts directly or indirectly with the IRE, or whether 1a-induced RNA stabilization depends on host factors that interact independently with the IRE, the box B element could represent a site of interaction with host factors.

Despite its importance, the box B motif alone was unable to support 1a-induced RNA stabilization or RNA3 replication without 5′ and 3′ flanking sequences (Fig. 6 and 7). These flanking sequences might contribute independent recognition sites, higher-order structure, or both. Since the IRE was capable of functioning in multiple non-RNA3 contexts (e.g., β-globin and GUS), any essential higher-order RNA structure must be self-contained within the IRE.

Additional effects on 1a-dependent RNA stabilization. When expressed alone, IRΔ showed significant 1a-induced stabilization (Fig. 4A) and thus contains the only sequences essential in cis for this effect. However, RNAs containing a functional intergenic region segment but lacking natural 5′ UTRs (Δ5′ UTR and Δ5′ UTRΔa [Fig. 4A] and None + IRΔ [Fig. 5]) were less efficiently stabilized by 1a than their counterparts having 5′ UTRs. The ability of nonviral GAL1 and PGK 5′ UTRs to substitute for the RNA3 leader (Fig. 5) indicates that any requirement for a 5′ UTR does not involve specific viral sequences and thus may be linked to 5′ UTR binding of translation-associated factors or to translation itself. For both the 3a and β-globin RNAs lacking natural 5′ UTRs, the first AUG (corresponding to the start of the 3a and β-globin ORFs) is only six bases from the 5′ end of the mRNA and thus is too close for efficient translation initiation in yeast (45), resulting in translation of relatively short, out-of-frame ORFs from the second AUG. Consequently, the absence of a natural 5′ UTR may result in these RNAs being degraded by the efficient nonsense-mediated mRNA decay pathway (37) before 1a or associated factors can interact with them. Alternatively, efficient translation of an ORF immediately upstream of the IRE sequences might be required for efficient 1a-induced stability.

Another factor influencing the extent of RNA stabilization appeared to be the amount of 1a present. During the course of these studies, we observed that expressing 1a from the plasmid used here (pB1MS6) (see Materials and Methods) increased RNA3 accumulation only 3- to 6-fold, or less than the 7- to 10-fold increase seen with a different plasmid (20). The higher efficiency of 1a stabilization in the latter case correlated with a higher level of 1a expression, as determined by RNA blotting. Still higher 1a expression from the strong GAL1 promoter led to even higher levels of 1a-induced stabilization. Thus, under the conditions used here, 1a protein was limiting for 1a-induced stabilization.

Further experiments are in progress to determine whether 1a interacts directly or indirectly with the IRE, whether the resulting interaction is transient or stable, and how 1a action leads to increased RNA3 stability. The results of these studies should provide additional insights into the mechanisms involved in positive-strand RNA virus RNA replication.

ACKNOWLEDGMENTS

We thank Sanjeev Shah for excellent technical assistance and members of our laboratory for helpful discussions throughout the course of this work.

This work was supported by the National Institutes of Health through grant GM35072. P. Ahlquist is an investigator of the Howard Hughes Medical Institute.

REFERENCES

