Characterization of Drug Resistance-Associated Mutations in the Human Cytomegalovirus DNA Polymerase Gene by Using Recombinant Mutant Viruses Generated from Overlapping DNA Fragments

TOMAS CIHLAR,* MICHAEL D. FULLER, AND JULIE M. CHERRINGTON
Gilead Sciences, Foster City, California 94404

Received 20 January 1998/Accepted 2 April 1998

A number of specific point mutations in the human cytomegalovirus (HCMV) DNA polymerase (UL54) gene have been tentatively associated with decreased susceptibility to antiviral agents and consequently with clinical failure. To precisely determine the roles of UL54 mutations in HCMV drug resistance, recombinant UL54 mutant viruses were generated by using cotransfection of nine overlapping HCMV DNA fragments into permissive fibroblasts, and their drug susceptibility profiles were determined. Amino acid substitutions located in UL54 conserved region IV (N408D, F412C, and F412V), region V (A987G), and δ-region C (L501I, K513E, P522S, and L545S) conferred various levels of resistance to cidofovir and ganciclovir. Mutations in region II (T700A and V715M) and region VI (V781I) were associated with resistance to foscarnet and adefovir. The region II mutations also conferred moderate resistance to lobucavir. In contrast to mutations in other UL54 conserved regions, those residing specifically in region III (L802M, K805Q, and T821I) were associated with various drug susceptibility profiles. Mutations located outside the known UL54 conserved regions (S676G and V759M) did not confer any significant changes in HCMV drug susceptibility. Predominantly an additive effect of multiple UL54 mutations with respect to the final drug resistance phenotype was demonstrated. Finally, the influence of selected UL54 mutations on the susceptibility of viral DNA replication to antiviral drugs was characterized by using a transient-transfection-plus-infection assay. Results of this work exemplify specific roles of the UL54 conserved regions in the development of HCMV drug resistance and may help guide optimization of HCMV therapy.

Despite the recent decline in the incidence of human cytomegalovirus (HCMV) infections in AIDS patients due to the implementation of highly active antiretroviral therapy, HCMV still remains a significant pathogen in human immunodeficiency virus-infected individuals (26, 30). In addition, immunocompromised patients undergoing bone marrow or solid organ transplantations belong to a group at high risk for HCMV infections (42). Ganciclovir (GCV), cidofovir (CDV), and foscarnet (PFA) are currently used for the management of HCMV disease (14, 19, 32). All three agents target viral DNA replication. GCV is a nucleoside analog that requires triphosphorylation to its active form. The first phosphorylation step is dependent on the viral phosphotransferase encoded by the UL97 gene (35, 49). CDV is a nucleoside monophosphate analog, and its activation to CDV-diphosphate does not require any product of viral infection (15). The active metabolites of both CDV and GCV act as alternative substrates and competitive inhibitors of the HCMV DNA polymerase (DNA Pol) encoded by the UL54 gene (28, 38). PFA, on the other hand, is an analog of inorganic pyrophosphate and as such functions directly as a noncompetitive inhibitor of the UL54 polymerase (39).

Several additional anti-HCMV drugs are currently under clinical evaluation. Among others, adefovir (ADV) [9-[2-phosphonomethoxyethyl]adenine] and lobucavir (LBV) (cyclobut-G) have been identified as highly effective inhibitors of HCMV replication in vitro. Similar to the case for CDV and GCV, their active forms, ADV-diphosphate and LBV-triphosphate, are potent competitive inhibitors of HCMV DNA Pol (51, 55).

HCMV strains with decreased drug susceptibility can be selected in cell culture as well as in patients undergoing anti-HCMV therapy. It has been suggested that the development of drug resistance in patients may result in clinical disease progression (22, 45, 53). Resistance to GCV is associated with specific sequence alterations in the UL97 gene alone (3, 11, 37) or in combination with UL54 mutations (6, 44, 50). GCV-resistant strains expressing only UL54 mutations are rare. Recently, it has been demonstrated that UL97 mutations are usually selected after shorter periods of GCV treatment and confer low-level GCV resistance, while the combination of UL97 and UL54 alterations arises predominantly during extended GCV therapy and such isolates exhibit high-level GCV resistance and cross-resistance to CDV in vitro (44). PFA-resistant viruses have not been detected when PFA is administered as first-line treatment (47). However, PFA-resistant strains can arise when PFA treatment follows extensive GCV therapy (13, 43, 44). Selection of CDV-resistant strains during CDV therapy has not yet been reported (9).

A large number of UL54 mutations have been detected in drug-resistant clinical strains (21, 44). The majority of these alterations are located within UL54 conserved regions. Eight conserved regions (designated I to VII and δ-region C) with significant amino acid sequence homology with other DNA-dependent DNA polymerases have been identified in UL54 (29, 54, 58). Specific amino acid residues located within regions I, II, and III have been shown to directly participate in the binding of deoxynucleoside triphosphates, chelating the Mg$^{2+}$...
ion, and interacting with primer and template (52, 57). Involvement in similar types of interactions is also expected for regions V, VI, and VII. On the other hand, it can be concluded from sequence homology with other regions V, VI, and VII. On the other hand, it can be concluded that specific domains located within conserved region IV and δ-region C are probably involved in the 3′-5′ exonuclease function of HCMV DNA Pol (5, 7).

Based on the characterization of drug resistance-associated mutations in other herpesviruses, namely, herpes simplex virus type 1 (HSV-1), the UL54 conserved regions are expected to participate in interactions with antiviral inhibitors. However, obtaining absolute proof of the association of UL54 mutations with drug resistance has been difficult due to limitations of marker transfer as the only technique available for generation of HCMV recombinants expressing UL54 mutations (36, 50). Only a limited number of recombinants have been constructed by using this laborious, inefficient, and time-consuming approach, and these have shown that UL54 alterations L501I and A987G confer decreased susceptibility to GCV and CDV (36, 50). Similarly, the T700A and V715M mutations have been recently used to prove the role of the F412C and L802M approach, and these have shown that UL54 alterations L501I and A987G confer decreased susceptibility to GCV and CDV (36, 50). Similarly, the T700A and V715M mutations have been recently used to prove the role of the F412C and L802M mutation with drug resistance (13).

A more detailed knowledge of drug resistance phenotypes associated with specific UL54 alterations could be helpful in optimizing drug regimens to achieve more effective treatment of HCMV infections. Therefore, we developed a strategy for the efficient construction of UL54 mutant recombinants which is derived from the previously described cosmid cotransfection approach (31). Due to the large number and diverse character of the mutations studied, we were able to define the roles played by the UL54 conserved regions in HCMV drug resistance.

MATERIALS AND METHODS

Cells and viruses. HFL-1 (ATCC CCL-153) and HEL-299 (ATCC CCL-137) human diploid lung fibroblasts and normal human dermal fibroblasts (NHDF) (Clonetics) were propagated in Eagle’s minimum essential medium supplemented with 10% fetal calf serum, nonessential amino acids, 100 U of penicillin per ml, and 100 μg of streptomycin per ml. The cells were not used beyond 10 passages. HCMV strain AD169 and strain Towne were grown in NHDF cells.

DNA constructs. Construction of the cosmids containing Towne strain DNA fragments (Tn46, Tn45, Tn47, Tn44, Tn26, Tn15, and Tn20), as well as their sizes and locations in the HCMV genome, has been described previously (31). The viral fragment of Tn24 corresponded to the region between nucleotides (nt) 39479 and 77110 of the AD169 genome. Cloning of the EcoRI M fragment from the AD169 genome into pGEM-3Z (Promega) to generate pGEM-3Z (Promega) described elsewhere (16), and the construction of pGEM-3Z (Promega) from pGPOL is shown in Fig. 1. Plasmid pCOS47 was generated by cloning a 12-kb fragment (nucleotides 80526 to 92898) from a NotI-digested Tn47 cosmid into the NotI site of pGEM-3Z (Promega). pSP50, used for the transient-transfection and -infection assay, was a generous gift of Greg Pari, and its construction is described elsewhere (1).

Site-directed mutagenesis of the UL54 gene. Mutagenesis was performed by a two-step PCR amplification procedure (27) with the Expand High Fidelity PCR System (Boehringer Mannheim) and pGPOL(m) as the template. Depending on the location of the mutation within UL54, either the XhoI-SphI or SpIΛ-AccIII region of pGPOL(m) was amplified (Fig. 1). Each mutation was introduced by using a specific pair of 30-mer mutagenic primers. Oligonucleotide pairs 5′-ATGGATCCGAATTCGCGTGACGCTGACGCGG-3′ and 5′-ATCCGACGACGCGCGCGCGCGCGCGCAATGCACGACGACGAGT-3′ were used as outer primers for amplification of the XhoI-SphI and SpIΛ-AccIII regions, respectively. After linearization of the template by HindIII digestion, the two products of the first PCR step were purified by agarose gel electrophoresis and joined by the second PCR amplification with the corresponding outer primers. The final PCR product was digested with either XhoI-SphI or SpIΛ-AccIII restriction enzymes and subcloned back into pGPOL(m). The correct nucleotide sequence of the entire amplified region was verified by sequence analysis of both DNA strands. After digestion of pGPOL(m) with NotI-AccIII, the resulting 3.1-kb fragment carrying the desired UL54 mutation was subcloned into pGPOL, which was subsequently used for generation of the mutant recombinant viruses.

Generation of UL54 mutant viruses. The viruses were generated by cotransfection of nine overlapping viral DNA fragments (Fig. 2) into HEL-299 or HFL-1 cells. The HCMV DNA fragments Tn46, Tn45, Tn24, Tn44, Tn26, Tn20, and Tn15 were released from the cosmid vector by digestion of 6 μg of each cosmid with PacI and mixed with 3 μg of EcoRI-digested pGPOL carrying the respective
UL54 mutation and 3 μg of NotI-digested pCOS47. The mixture was ethanol precipitated and resuspended in 120 μl of TE buffer (10 mM Tris-HCl [pH 8.0] and 1 mM EDTA). The transfection of CaPO4 precipitation was performed for each virus in triplicate as described previously (31) with minor modifications. Briefly, 10 μg of the DNA mixture in 0.5 ml of 250 mM CaCl2 was mixed with the same volume of 2× HBS buffer (280 mM NaCl, 10 mM KCl, 1.4 mM Na2HPO4, 5.6 mM glucose, and 20 mM HEPES [pH 7.1]) and immediately added to 1.5×106 cells in a 25-cm2 flask seeded 3 to 4 h earlier. After 30 min at 37°C with occasional rocking, 2 ml of fresh medium was added, and the cells were incubated for additional 4 to 5 h. Then, the medium was removed, and cells were layered with 3 ml of 1× HBS–15% glycerol for 3 min, washed twice with 4 ml of medium, and fed with fresh medium supplemented with 15% fetal calf serum. Transfected cultures were refed every 3 to 4 days, and virus plaques were usually detected 10 to 16 days following transfection. Stocks of mutant viruses were prepared from infected cells and stored in growth medium with 10% dimethyl sulfoxide. To verify the size of the recombined UL54 gene and the presence of the desired mutation in each virus, DNA was purified from 106 infected cells by using the QiAamp Tissue Kit (Qiagen), the full-length UL54 gene was amplified by PCR with primers 5′AACTGGATATCTAGGTGCTGCATG3′ and 5′GGATGCGACGTCTGAGGCATCACCC3′, and sequence analysis of the PCR product was performed.

Structural analysis of viral genomes. To purify DNA from recombinant viruses, extracellular virions were collected from 10 ml of culture medium by centrifugation at 100,000 × g for 90 min. The virus pellets were resuspended in 50 mM Tris-HCl [pH 7.5], 150 mM NaCl, 10 mM EDTA, and 1% SDS and incubated with 0.2 mg of proteinase K for 3 h at 30°C. DNA was extracted twice with phenol-chloroform-isoamylalcohol (25:24:1) and once with chloroform-isoamylalcohol (24:1), precipitated with ethanol, and resuspended in TE buffer. After digestion with EcoRI and separation on a 0.4% agarose gel, DNA was transferred onto a Hybond-N membrane (Amersham) by overnight capillary blotting in 20× SSC, and probed with pGEM-3Z which was labeled with [α-32P]dATP (Amersham) (3,000 Ci/mmol) by using the Prime-It II random primer kit (Stratagene). The membrane was prehybridized and hybridized with the probe in Gold hybridization buffer (Amersham) for 24 h, and half of the digest was separated on a 0.7% agarose gel, transferred onto a Hybond-N+ membrane (Amersham) by overnight capillary blotting in 20× SSC, and probed with pGEM-3Z which was labeled with [α-32P]dATP (Amersham) (3,000 Ci/mmol) by using the Prime-It II random primer kit (Stratagene). The membranes were hybridized and washed extensively with phosphate-buffered saline and incubated in either the absence or presence of various concentrations of CDV, GCV, or PFA. Total DNA was purified from each well 12 h after infection. Cells were washed twice with 5 ml of phosphate-buffered saline and directly solubilized in 0.5 ml of lysis buffer (10 mM Tris-HCl [pH 8.0], 10 mM EDTA, and 2% SDS). The lysates were incubated with 0.1 mg of proteinase K for 3 h at 50°C, and DNA was extracted as described above, ethanol precipitated, and resuspended in 150 μl of TE buffer. Digestion of 2 μg of purified DNA with 15 U of EcoRI and 15 U of DpnI in 20 μl was performed for 24 h, and half of the digest was separated on a 0.7% agarose gel, transferred onto a Hybond-N+ membrane (Amersham) by overnight capillary blotting in 20× SSC, and probed with pGEM-3Z which was labeled with [α-32P]dATP (Amersham) (3,000 Ci/mmol) by using the Prime-It II random primer kit (Stratagene). The membrane was prehybridized and hybridized with the probe in Gold hybridization buffer (Amersham) for 24 h and 16 h, respectively, at 42°C and washed twice with 0.2× SSC–0.2% SDS at 55°C for 30 min and twice with 1× SSC at room temperature for 5 min. The membrane was first exposed to X-ray film at ~70°C for 16 to 24 h and then scanned by using the Storm 860 PhosphorImager system (Molecular Dynamics). The bands corresponding to intracellularly replicated full-length pSP50 were quantified and expressed as a percentage of plasmid replication in the absence of drug. The IC50 was determined for each drug from the semilogarithmic plot of plasmid replication versus drug concentration.

RESULTS

Recombination of viral DNA fragments as an efficient strategy for construction of UL54 mutant viruses. Recently, a system for construction of recombinant HCMVs via intracellular homologous recombination of eight overlapping viral DNA fragments was developed (31). The Towne strain DNA fragments were cloned into cosmids vectors and used successfully to create large-scale modifications of the HCMV genome. The
sizes of these fragments, however, did not allow for efficient introduction of point mutations into the viral genome. To circumvent this obstacle, the original Tn47 fragment containing the UL54 gene was replaced by two smaller DNA fragments cloned into plasmid vectors (Fig. 2). Plasmid pGPOL contained the UL54 gene within the 7.4-kbp EcoRI M fragment cloned from the AD169 genome. The UL54 gene from the AD169 strain was chosen because its sequence represents a standard consensus most frequently used for comparative sequence analysis of drug-resistant HCMV strains (4, 44). A gap between the M fragment and an adjacent Tn44 fragment was spanned by a 12-kbp NotI fragment from the pCOS47 plasmid. Cotransfection into human lung fibroblasts of seven PacI-digested cosmids together with EcoRI-digested pGPOL and NotI-digested pCOS47 generated infectious recombinant virus, with plaques usually detectable within 10 to 16 days. This suggests that the recombination of nine viral DNA fragments occurred at an efficiency comparable to that of the recombination of the original eight cosmid-derived fragments despite significantly shorter overlapping regions between pGPOL, pCOS47, and the neighboring cosmids.

The construction of mutant viruses was carried out by using pGPOL plasmids which contained the UL54 mutation(s) of interest. Since all the mutations studied were located in the nonoverlapping region of the M fragment, the virus progeny generated by the cotransfection always represented a homogeneous population of the mutant strain, and no further selection and purification of the viruses were required.

The UL54 wild-type recombinant virus was tested for its susceptibility to five antiviral drugs. By using the plaque reduction assay, mean IC50s of 0.75, 3.5, 45, 42, and 3.8 μM were determined for CDV, GCV, PFA, ADV, and LBV, respectively, from at least three independent experiments. The UL54 wild-type recombinant virus exhibited drug susceptibilities identical to those of Towne and AD169 (data not shown).

To verify the genomic structure of the recombinant viruses, especially in the region surrounding the UL54 gene, we purified DNAs from the UL54 wild-type and selected mutant recombinant viruses and performed a Southern blot analysis of EcoRI-digested DNA with independent cosmids as hybridization probes. Figure 3 shows representative results with three different probes. Overall, this analysis with the set of six cosmids revealed no structural differences compared to the genome of the parental Towne strain except in the heterogeneity of the EcoRI E fragment. However, several prevalent forms of the E fragment have been previously described for the Towne genome, and they reflect the heterogeneity of the region surrounding the origin of replication (31).

Mutations associated with cross-resistance to CDV and GCV are located in the N- and C-terminal conserved regions of the UL54 gene. In total, 17 recombinant viruses expressing various single point mutations in the UL54 gene were gener-

FIG. 3. Structure of recombinant viral genomes. (a) EcoRI restriction map of the HCMV Towne genome and locations of the cosmid probes Tn45, Tn47, and Tn20 (adapted from reference 31). (b) Southern analyses with the corresponding cosmid probes. An arrow in the Tn47 panel indicates the EcoRI K fragment harboring the full-length UL54 gene, and the letters to the right of each panel correspond to the alphabetical designations of Towne EcoRI fragments. Numbers to the left indicate molecular sizes in kilobase pairs. WT, wild type. The analyses were performed as described in Materials and Methods.
TABLE 1. Drug susceptibilities of recombinant HCMVs expressing various mutations in the UL54 gene

<table>
<thead>
<tr>
<th>Region</th>
<th>UL54 alteration</th>
<th>Reference(s)(^a)</th>
<th>Selection drug(s)(^b)</th>
<th>Fold change in IC(_{50}) relative to that for the wild-type recombinant(^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>N408D</td>
<td>44</td>
<td>GCV, PFA</td>
<td>4.9 5.6 1.3 -1.3 -4.0 1.6</td>
</tr>
<tr>
<td></td>
<td>F412C</td>
<td>13, 44</td>
<td>GCV, PFA</td>
<td>4.2 18.0 1.2 -1.2 -4.2 1.2</td>
</tr>
<tr>
<td></td>
<td>F412V(^d)</td>
<td>36</td>
<td>GCV</td>
<td>4.3 15.5 1.1 -1.3 1.0</td>
</tr>
<tr>
<td>δC</td>
<td>L501I(^e)</td>
<td>36</td>
<td>GCV</td>
<td>6.0 9.1 1.4 -2.0 1.4</td>
</tr>
<tr>
<td></td>
<td>K513E</td>
<td>44</td>
<td>GCV, PFA</td>
<td>5.0 9.1 1.4 -2.0 1.2</td>
</tr>
<tr>
<td></td>
<td>P522S</td>
<td>8</td>
<td>GCV, PFA, CDV</td>
<td>3.1 3.6 1.1 -2.5 1.1</td>
</tr>
<tr>
<td></td>
<td>L545S</td>
<td>9</td>
<td>GCV, PFA, CDV</td>
<td>3.5 9.1 1.2 -5.9 1.2</td>
</tr>
<tr>
<td></td>
<td>D588E</td>
<td>44</td>
<td>GCV, PFA</td>
<td>1.3 1.1 2.3 2.0 1.1</td>
</tr>
<tr>
<td>II</td>
<td>T700A</td>
<td>2, 4</td>
<td>GCV, PFA</td>
<td>1.2 1.3 5.8 5.8 3.1</td>
</tr>
<tr>
<td></td>
<td>V715M</td>
<td>2, 4</td>
<td>GCV, PFA</td>
<td>1.3 1.1 9.5 6.0 3.1</td>
</tr>
<tr>
<td>VI</td>
<td>V781I</td>
<td>2</td>
<td>GCV, PFA</td>
<td>1.0 1.2 5.2 3.0 1.8</td>
</tr>
<tr>
<td>III</td>
<td>L802M</td>
<td>13, 44</td>
<td>GCV, PFA</td>
<td>1.1 0.9 3.2 2.8 1.3</td>
</tr>
<tr>
<td></td>
<td>K805Q</td>
<td>44</td>
<td>GCV, PFA</td>
<td>1.0 2.2 -5.6 -4.8 -4.1</td>
</tr>
<tr>
<td></td>
<td>T821I</td>
<td>44</td>
<td>GCV, PFA</td>
<td>4.5 1.9 21 6.4 3.6</td>
</tr>
<tr>
<td>V</td>
<td>A987G(^f)</td>
<td>50</td>
<td>GCV</td>
<td>5.3 11.3 1.2 1.1 1.1</td>
</tr>
<tr>
<td>Other</td>
<td>S676G</td>
<td>44</td>
<td>GCV, PFA</td>
<td>1.1 1.2 0.9 1.4 1.0</td>
</tr>
<tr>
<td></td>
<td>V759M</td>
<td>8</td>
<td>CDV</td>
<td>1.5 1.1 1.1 1.2 1.3</td>
</tr>
</tbody>
</table>

\(^a\) Values are averages from at least three determinations with two independently generated recombinant viruses. In all cases, the standard error was less than 35%. Boldface numbers indicate significant (i.e., at least twofold) changes in HCMV drug susceptibility. Positive and negative values represent fold increases and decreases, respectively, in IC\(_{50}\) relative to that of the UL54 wild-type recombinant virus.

\(^b\) Reference(s) describing the original identification of the UL54 alteration.

\(^c\) Therapy after which the mutation in clinical isolate was identified or drug used for selection in cell culture.

\(^d\) UL54 alteration selected in cell culture.
The D588E substitution, located at the very C terminus of δ-region C, also conferred a two- to threefold decrease in the sensitivity to PFA and ADV. Although amino acid residue 588 is not conserved among other herpesviruses, it resides within a region of sequence homology conserved among herpesvirus polymerases previously designated domain A (25).

Mutations in UL54 conserved region III are associated with various changes in HCMV drug susceptibility. Several novel mutations within UL54 region III and in its immediate proximity were recently identified in HCMV drug-resistant clinical isolates (44). To characterize these genotypic changes, recombinant viruses independently expressing L802M, K805Q, and T821I alterations were constructed. Drug susceptibility assays revealed that the T821I mutation was associated with measurable elevations in GCV, ADV, and LBV IC50s but with a very significant, over 20-fold, increase in the PFA IC50 (Table 1). The recombinant virus expressing the K805Q mutation exhibited moderate CDV resistance together with marked hypersensitivity to PFA, ADV, and LBV. The L802M substitution, located in immediate vicinity of the N terminus of region III, conferred a moderate decrease in susceptibility only to PFA and ADV. A recombinant virus expressing the L802M mutation was recently generated also by marker transfer. In contrast to our observations, this virus was shown to exhibit not only PFA resistance but also mild GCV resistance (13). However, in that study, two additional UL54 genetic changes were transferred along with the L802M mutation into the resulting recombinant virus, which may have influenced its final drug resistance phenotype.

Mutations located outside the UL54 conserved domains do not confer significant changes in drug susceptibility. Mutations at codons 676 and 759, residing outside the known conserved domains of the UL54 gene, were also investigated by using recombinant viruses. The substitution S676G was identified in a clinical strain recovered from a retinitis patient treated with GCV and PFA and was tentatively associated with decreased susceptibility to GCV and CDV (44). The amino acid change V759M was found in the UL54 gene after its amplification from a blood sample of a patient receiving CDV therapy (8). However, neither S676G nor V759M conferred any significant change in drug susceptibility, suggesting that alterations located outside the defined UL54 conserved domains may not play a significant role in HCMV drug resistance.

Multiple UL54 mutations are predominantly additive with respect to the final level and profile of drug resistance. Recent analysis of HCMV clinical isolates from AIDS patients treated sequentially with GCV and PFA revealed several strains with two mutations in the UL54 gene. These isolates showed increases in CDV, GCV, and PFA IC50s and therefore were considered to be multidrug resistant (13, 44). To elucidate the mutual effect of two UL54 mutations and their contributions to the final drug resistance phenotypes, each mutation was studied separately and three recombinant viruses expressing two UL54 mutations identified in resistant isolates were also generated and characterized. These three recombinants with double UL54 mutations exhibited multidrug resistance phenotypes, as did their corresponding clinical strains. As shown in Table 2, the susceptibility of the F412C-L802M mutant virus to CDV and GCV was similar to that of the virus expressing the F412C mutation alone. In addition, the threefold decrease in PFA susceptibility of the F412C-L802M mutant corresponded to that determined for the L802M virus. Similarly, the final levels of CDV-GCV and PFA resistance for the K513E-D588E mutant virus were comparable to those of independent K513E and D588E mutants, respectively. Interestingly, an additive effect was observed also with respect to final ADV susceptibility.

The data show that the hypersensitivity to ADV due to the presence of the F412C or K513E mutation could be diminished or completely reversed by the D588E or L802M mutation conferring ADV resistance. An additive contribution of the K805Q and T821I alterations to the final GCV resistance of the K805Q-T821I mutant virus was also determined. However, despite the finding that the T821I mutation alone conferred an approximately 20-fold decrease in susceptibility to PFA, the PFA IC50 for the K805Q-T821I mutant virus was more than 50-fold higher than that for the virus expressing K805Q alone. This suggests a nonadditive effect of these two mutations with respect to the final level of PFA susceptibility. A similar effect of these two mutations was observed also for the susceptibility to ADV.

Resistant viruses exhibit decreased sensitivity of viral DNA replication towards corresponding inhibitors. The UL54 catalytic subunit of HCMV DNA Pol is the cornerstone of the viral DNA replication machinery and as such is the target for antiviral therapy. However, evidence that UL54 drug resistance-associated mutations directly diminish the sensitivity of viral DNA replication to antiviral drugs has not yet been presented. A transient-transfection-plus-infection assay was used to evaluate the correlation between the drug susceptibility of mutant viruses and the sensitivity of their DNA replication to corresponding inhibitors. In this type of assay, which was originally used for identification of the origin of HCMV lytic-phase DNA replication (oriLyt), intracellular replication of a plasmid containing the oriLyt sequence is driven by a complex of viral replication proteins provided in trans by viral infection (1). After its replication in infected cells, the plasmid is no longer methylated at specific sites and becomes resistant to DpnI digestion. Based on this fact, the intracellular replication of the plasmid can be quantitatively determined. Although the transient-transfection-plus-infection approach should not generate data significantly different from the direct measurement of viral DNA synthesis by a dot blot hybridization assay (48), it allows for more precise standardization based on the quantification of the input of the transfected DNA. In addition, since the digested oriLyt plasmid is size fractioned on an agarose gel, the assay offers a possibility of detecting replication interme-

<table>
<thead>
<tr>
<th>UL54 genotype</th>
<th>IC50 (μM)a</th>
<th>GCV</th>
<th>CDV</th>
<th>PFA</th>
<th>ADV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>3.5</td>
<td>0.75</td>
<td>45</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>F412C</td>
<td>15 (4.3)</td>
<td>13 (17)</td>
<td>54 (1.2)</td>
<td>10 (–4.2)</td>
<td></td>
</tr>
<tr>
<td>L802M</td>
<td>3.9 (1.1)</td>
<td>0.7 (0.9)</td>
<td>140 (3.1)</td>
<td>120 (2.8)</td>
<td></td>
</tr>
<tr>
<td>F412C L802M</td>
<td>22 (6.2)</td>
<td>12 (16)</td>
<td>140 (3.1)</td>
<td>25 (–1.7)</td>
<td></td>
</tr>
<tr>
<td>K513E</td>
<td>17.5 (5.0)</td>
<td>6.9 (9.2)</td>
<td>50 (1.1)</td>
<td>20 (–1.9)</td>
<td></td>
</tr>
<tr>
<td>D588E</td>
<td>4.2 (1.2)</td>
<td>0.8 (1.1)</td>
<td>110 (2.4)</td>
<td>84 (2.0)</td>
<td></td>
</tr>
<tr>
<td>K513E D588E</td>
<td>23 (6.6)</td>
<td>8.3 (11.1)</td>
<td>120 (2.7)</td>
<td>33 (–1.3)</td>
<td></td>
</tr>
<tr>
<td>K805Q</td>
<td>3.5 (1.0)</td>
<td>1.7 (2.2)</td>
<td>8.0 (–5.6)</td>
<td>8.9 (–4.8)</td>
<td></td>
</tr>
<tr>
<td>T821I</td>
<td>15.8 (4.5)</td>
<td>1.4 (1.9)</td>
<td>950 (21)</td>
<td>260 (6.4)</td>
<td></td>
</tr>
<tr>
<td>K805Q T821I</td>
<td>15.1 (4.3)</td>
<td>1.6 (2.1)</td>
<td>455 (10.1)</td>
<td>179 (4.0)</td>
<td></td>
</tr>
</tbody>
</table>

a The IC50 values represent averages from at least three determinations with a standard error that was less than 35%. The boldface numbers indicate a significant (i.e., at least a twofold) change in HCMV drug susceptibility. Positive and negative numbers in parentheses represent fold increases and decreases, respectively, in the IC50 values of the mutant virus relative to that for the UL54 wild-type recombinant virus.
The sensitivity of oriLyt plasmid replication to high PFA concentrations was previously demonstrated (41). Our data indicate that the plasmid replication can also be blocked by CDV and GCV. To determine whether there was a difference in the response to antiviral agents of plasmid replication when driven either by wild-type polymerase or polymerase containing drug resistance-associated mutations, confluent human fibroblasts were transfected with plasmid pSP50 containing oriLyt plasmid replication driven by the wild-type (WT) and drug-resistant UL54 mutant viruses. (a) The levels of pSP50 plasmid replication in the presence of various concentrations of GCV (lane 1, no drug; lanes 2 to 5, 2, 6, 20, and 60 μM, respectively), CDV (lane 1, no drug; lanes 2 to 5, 0.5, 1.5, 5, and 15 μM, respectively), and PFA (lane 1, no drug; lanes 2 to 5, 6, 20, 60, and 200 μM, respectively) were determined by the transient-transfection-plus-infection assay as described in Materials and Methods. The arrows indicate the intracellularly replicated to pSP50 plasmid resistant to DpnI digestion. (b) Drug dose-response curves and IC₅₀ for inhibition of pSP50 replication after infection with the UL54 wild-type (solid circles), A987G (open circles), and V715M (solid triangles) recombinant viruses.

FIG. 4. Drug sensitivity of HCMV oriLyt (pSP50) plasmid replication driven by the wild-type (WT) and drug-resistant UL54 mutant viruses. (a) The levels of pSP50 plasmid replication in the presence of various concentrations of GCV (lane 1, no drug; lanes 2 to 5, 2, 6, 20, and 60 μM, respectively), CDV (lane 1, no drug; lanes 2 to 5, 0.5, 1.5, 5, and 15 μM, respectively), and PFA (lane 1, no drug; lanes 2 to 5, 6, 20, 60, and 200 μM, respectively) were determined by the transient-transfection-plus-infection assay as described in Materials and Methods. The arrows indicate the intracellularly replicated to pSP50 plasmid resistant to DpnI digestion. (b) Drug dose-response curves and IC₅₀ for inhibition of pSP50 replication after infection with the UL54 wild-type (solid circles), A987G (open circles), and V715M (solid triangles) recombinant viruses.
Lyt and 24 h later were infected with either the wild-type or mutant recombinant virus. The A987G and V715M mutants, representing the CDV-GCV or PFA resistance phenotype, respectively, were selected for the experiment. Following infection, inhibitors were added at different concentrations, and the replication of pSP50 was determined after a 120-h incubation as described in Materials and Methods. Figure 4a shows the levels of pSP50 replication in the presence of CDV, GCV, and PFA after infection with the UL54 wild-type or mutant viruses. The IC50 for plasmid replication was determined for each antiviral drug from the dose-response curves (Fig. 4b). pSP50 replication after infection with the A987G mutant was six- and threefold less susceptible to CDV and GCV, respectively, than plasmid replication after infection with either the UL54 wild-type or V715M mutant virus. Comparatively, the susceptibility of pSP50 replication to PFA when driven by the V715M mutant virus was more than threefold lower than that after the infection with either the UL54 wild-type or A987G mutant virus. These data indicate a correlation between the drug susceptibility of the virus and the response of its DNA replication to antiviral drugs.

DISCUSSION

Treatment of HCMV infections in immunocompromised patients with antiviral drugs that target viral DNA Pol can lead to the development of specific sequence alterations in the UL54 gene which decrease the drug susceptibility of the virus. To study these alterations, we developed a novel approach for the construction of recombinant HCMVs expressing UL54 mutations. This method offers significant advantages over the marker transfer technique. Since homogeneous progeny of mutant virus is generated from the overlapping fragments, there is no need for further selection in the presence of drug or for subsequent extensive plaque purification. Consequently, the possible development of additional, independent mutations during the selection step after marker transfer is eliminated by using the cotransfection strategy.

The study of 17 single-amino-acid substitutions in HCMV DNA Pol revealed two major distinct cross-resistance profiles. The CDV-GCV and PFA-ADV cross-resistance phenotypes are consistent with previous characterization of HCMV drug-resistant strains selected in vitro in the presence of various antiviral drugs (46). As shown in Fig. 5, most of the mutations conferring the same drug resistance phenotype cluster together in specific conserved regions. The overwhelming majority of the CDV-GCV resistance-associated alterations reside in region IV and in the N-terminal portion of -region C. The only exception is the mutation A987G located in region V. Since the functions predicted for the N- and C-terminal conserved regions are distinct from one another (7, 54), the molecular mechanisms by which drug susceptibility is altered may not be identical for the amino acid alterations residing in different conserved regions. The molecular mechanisms of action of CDV and GCV may consist of several independent steps. Active metabolites of both compounds compete with natural substrates for the deoxynucleoside triphosphate-binding site and also can be incorporated into the nascent chain during viral DNA replication. It has been shown in primer extension experiments with purified HCMV polymerase that the incorporation of CDV slows further elongation of the primer and that the enzyme is very inefficient in utilizing a template containing internally incorporated CDV molecules (56). Thus, based on the function assigned to the conserved domains, it could be expected that the alterations in regions III and V may decrease the enzyme affinity to the inhibitor. Those located in N-terminal conserved regions within or near the 3'-5' exonuclease domains may modify the efficiency of incorporation of the inhibitor into and its removal from the 3' end of the primer and/or the ability of the enzyme to utilize either primer or template with the inhibitor structure incorporated. A difference in the molecular mechanisms of CDV-GCV resistance conferred by the alterations located in the N-terminal and C-terminal conserved regions is supported also by the fact that region IV and -region C mutations, but not the region V A987G mutation, result in increased susceptibility of HCMV to ADV.

Conserved regions II and VI, located in the central part of the UL54 polypeptide, harbor amino acid substitutions conferring PFA-ADV resistance. The same phenotype was demonstrated also for the D588E mutation residing in -region C. In addition, mutations in region III significantly modify HCMV susceptibility to PFA. Such a wide distribution of PFA resistance-associated mutations across the central part of the UL54 polypeptide suggests that the binding site of the pyrophosphate moiety may be formed by a complex folding of several UL54 conserved regions. Based on the distribution of drug resistance-associated mutations, the involvement of remote amino acid residues in substrate binding has been previously proposed for HSV DNA Pol (18).

Despite being located in the same region, region III, muta-
conserved domain among the HCMV drug resistance phenotype has been identified to date outside the known conserved regions, do not modify HCMV data indicate that LBV is an anti-HCMV drug with a unique Thus, HCMV strains resistant to GCV due to the UL97 mu-
nance, and they confer various HCMV drug susceptibility pro-
tions. Thus, contrary to the case for mutations found in other
UL54 conserved domains, those residing in region III are not strictly associated with either CDV-GCV or PFA-ADV resis-
tances K805Q and T821I confer completely different drug sus-
ceptibility phenotypes. The K805Q mutation is associated with
marked hypersensitivity to PFA, while the T821I substitution
results in the highest PFA resistance ever reported among
HCMV strains. Similarly, specific mutations in region III of
HSV-1 DNA Pol could also confer either resistance (25) or
hypersensitivity (33) to pyrophosphate analogs. Recently, an
additional region III substitution, A809V, has been shown to
confer 2.5- and 6-fold decreases in HCMV susceptibility to
GCV and PFA, respectively (12). This phenotype differs from
those associated with any of the above-mentioned two muta-
tions. Thus, to the case for mutations found in other
UL54 conserved domains, those residing in region III are not strictly associated with either CDV-GCV or PFA-ADV resis-
tances. Furthermore, it is possible that certain combinations of alter-
ations may result from mutual additive, synergistic, or
antagonistic interactions between the single alterations. Furth-
ernore, it is possible that certain combinations of alter-
ations may generate a novel, unexpected drug resistance pro-
file. Therefore, three recombinant viruses expressing specific combina-
tions of two UL54 alterations observed in clinical iso-
lates were constructed. Their characterization revealed pre-
cisely an additive effect of these mutations with respect to
the final profile and level of HCMV drug resistance.

Thus, drug resistance during the treat-
ment of HCMV infections has been associated with clinical
progression of disease; therefore, such information may be
helpful in further optimizing therapy for HCMV infections.

ACKNOWLEDGMENTS

We are exceptionally grateful to George Kembel from Aviron for
the set of HCMV cosmids and for many helpful comments and dis-
cussions. We also thank Greg Pari from Hybridon for the kind gift of
the pSP50 plasmid and Jay Toole and Mick Hitchcock from Gilead
Sciences for critical reading of the manuscript.

REFERENCES

2. Baldanti, F., A. Sarasini, E. Silini, M. Barbì, A. Lazzarin, K. K. Biron,

3. Baldanti, F., E. Silini, A. Sarasini, C. L. Talarico, S. C. Stanat, K. K. Biron,

Sarasini, E. Silini, and G. Gerna. 1996. Single amino acid changes in the DNA polymerase confer foscarner resistance and slow-growth phenotype,
while mutations in the UL97-encoded phosphotransferase confer ganciclovir resistance in three double-resistant human cytomegalovirus strains recov-
ered from patients with AIDS. J. Virol. 70:1390–1395.

conserved 3′-5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerases. Cell 59:219–228.

6. Biron, K. K., and F. Baldanti. 1996. Nucleosides and foscarner—mecha-
Wiley & Sons Ltd., New York, N.Y.

9. Cherrington, J. M., D. M. Fuller, P. D. Lamy, R. Miner, J. P. Lalezari,
S. Nuesse, and W. L. Drew. In vitro antiviral susceptibilities of isolates from CMV retinitis patients receiving first or second line cidofovir therapy: rela-
tionship to clinical outcome. Submitted for publication.

Lalezari, R. C. Miner, and W. L. Drew. 1997. Evolution of mutations con-
ferring multidrug resistance during prophylaxis and therapy for cytomegalo-

Downloaded from http://jvi.asm.org/ on October 21, 2017 by guest
activity, pharmacokinetic properties and therapeutic use in immunocompromised patients with cytomegalovirus retinitis. Drugs 41:104–129.

atory Press, Cold Spring Harbor, N.Y.

29. Leicht, M. L. DePamphilis (ed.), DNA replication in eucaryotic cells. Cold Spring Harbor Labo-
atory Press, Cold Spring Harbor, N.Y.

34. Ye, L.-B., and E.-S. Huang. 1993. In vitro expression of the human cytomegalo-

istry 30:11742–11750.