Characterization of Late Gene Transcripts Expressed during Vegetative Replication of Human Papillomavirus Type 31b

MICHELLE A. OZBUN AND CRAIG MEYERS*

Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033

Received 21 January 1997/Accepted 17 March 1997

Human papillomaviruses (HPVs) are etiologic agents of anogenital cancers. The lack of an efficient in vitro system with which to study the differentiation-dependent viral life cycle has impeded most investigations of viral transcription and gene expression. The CIN-612 clone 9E cell line latently maintains episomal copies of HPV type 31b (HPV31b). The complete replicative life cycle of HPV31b can be studied by using the organotypic (raft) culture system. A number of spliced HPV31b early gene transcripts and two late gene transcripts have been described in studies using the raft system. An HPV31b early promoter, P_{97}, and a differentiation-induced promoter, P_{742}, have been characterized by using this system. In this study, we used the raft system to analyze the temporal expression patterns of HPV31b late gene transcripts during the viral life cycle. The expression of late RNAs peaked at day 12 after lifting to the air-liquid interface; the levels then declined dramatically by day 16. The peak of late RNA expression was coincident with the appearance of virus particles in the raft tissues. We characterized transcripts with the potential to encode late gene products, including 19 RNAs containing the L1 region and 4 RNAs containing the E5b and L2 open reading frames. We also found evidence for two novel promoters. Transcription of both L1- and L2-containing RNAs initiated at a region upstream of the early promoter. In addition, late gene RNAs were also transcribed by using a promoter in the E4 reading frame.

Human papillomaviruses (HPVs) are small DNA viruses similar in genomic structure and organization (reviewed in reference 13). To date, over 75 types of human papillomaviruses have been described (30). HPVs have a tropism for epithelial tissues and are capable of inducing benign and malignant lesions (3, 13, 51). Of those known to infect the anogenital mucosa, certain HPV types frequently are associated with lesions which progress to invasive cancers (24). These are known as high-risk HPVs and include HPV type 16 (HPV16), HPV18, HPV31, and HPV33. Low-risk types, such as HPV6 and HPV11, rarely lead to malignant progression.

The complete replicative cycle of HPVs is tightly linked to the differentiation state of the cells that they infect (28, 47). According to current models, infection of the basal cell layer occurs through a microabrasion; the circular viral genome replicates episomally and is maintained at ~50 to 100 copies per cell (3). Early genes are expressed under the control of the enhancer and promoter elements contained in the upstream regulatory region (URR) of the viral genome (13). Viral DNA replication is mediated by E1 and E2 proteins and occurs along with cellular DNA replication in the mitotically active basal layer, ensuring that both the parent and daughter cells maintain a constant number of viral genomes (23, 48). As cells migrate up through the epithelium, they undergo a complex program of differentiation. Concomitant with cellular differentiation in virally infected cells is the amplification of viral genomes, the expression of the late proteins, and the assembly of virions (2, 9, 23, 28).

Because the viral life cycle is dependent on cellular differentiation, it has been particularly difficult to cultivate and analyze various types of HPVs in the laboratory. High-risk HPV-containing cell lines have been established from both genital neoplasias and primary cells transfected with the complete viral genome (2, 5, 11, 17, 26, 34, 38, 41, 46, 50). These cell lines generally harbor HPV genomes that are integrated into the host cell DNA and therefore are impaired in the ability to carry out the complete viral life cycle (5, 17, 26, 34, 38, 41, 50). The structures of transcripts encoding high-risk HPV early genes have been characterized in cells containing high-risk HPV types, mostly by using monolayer cultures (8, 11, 15, 30, 31, 35, 40, 42–45). However, a typical result of integration is the disruption of late gene transcription, leaving many unanswered questions regarding late gene expression. In recent years, substantial progress has been made in the in vitro cultivation of high-risk HPVs; Meyers et al. purified virions from a cell line (CIN-612 9E) latently infected with HPV31b and propagated in the organotypic (raft) tissue culture system (28). Subsequently, Hummel and coworkers described a variety of polycistronic early and late HPV31b transcripts which display differential splicing (15, 16). They also characterized an HPV31b early promoter, P_{97}, and a differentiation-specific promoter, P_{742} (15).

We have used the organotypic culture system to further characterize HPV31b late gene transcripts expressed in CIN-612 9E tissues during the complete viral life cycle. Our temporal studies using raft tissues show that the expression of both L1- and L2-containing transcripts peaks at day 12 after lifting to the air-liquid interface and decreases substantially by day 16. The peak in transcription coincides with the first observations of viral particles by electron microscopy. We report four different transcripts containing the E5b and L2 open reading frames (ORFs) and 19 different transcripts containing the L1 ORF. The transcripts differ in their splicing patterns and initiation sites. Along with the differentiation-specific P_{742} promoter, we have identified two additional promoters, P_{17} and P_{36}, which mediate the transcription of RNAs containing the late gene ORFs.

* Corresponding author. Mailing address: Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033. Phone: (717) 531-6240. Fax: (717) 531-4600. E-mail: emeyers@bcmc.hmc.psu.edu.
performed by using standard techniques (37). p31URRE was made by ligating by TA cloning from RNA PCR products (see Fig. 5). Subsequent cloning was

TABLE 1. PCR primers used in analysis of HPV31b gene expression in CIN-612 clone 9E rafts

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence</th>
<th>Sense or antisense</th>
<th>ORF*</th>
<th>HPV31 nt*</th>
</tr>
</thead>
<tbody>
<tr>
<td>URR 5'</td>
<td>5'-TTA GGT GTG ACA CCA CAA TAG-3'</td>
<td>Sense</td>
<td>URR</td>
<td>7381–7398</td>
</tr>
<tr>
<td>E6 5'</td>
<td>5'-CCT GAA GAA ACC CTA CGG-3'</td>
<td>Sense</td>
<td>E6</td>
<td>120–137</td>
</tr>
<tr>
<td>E7 5'</td>
<td>5'-CCC GGC AGC TCA GAT GAG-3'</td>
<td>Sense</td>
<td>E7</td>
<td>644–661</td>
</tr>
<tr>
<td>742 5'</td>
<td>5'-CTA CAA TGG CTG ATC CAG-3'</td>
<td>Sense</td>
<td>E7/E1</td>
<td>852–874</td>
</tr>
<tr>
<td>E1L-3'</td>
<td>5'-GGT TCA TTT GTC TTT GTA-3'</td>
<td>Antisense</td>
<td>E1</td>
<td>256–2701</td>
</tr>
<tr>
<td>L2 5'</td>
<td>5'-GGG GTT ACA CCA CTC TAC AAA ACG GCA-3'</td>
<td>Sense</td>
<td>L2</td>
<td>4173–4198</td>
</tr>
<tr>
<td>L2-3'</td>
<td>5'-GTA GAG GTG TTT GAC CCG-3'</td>
<td>Antisense</td>
<td>L2</td>
<td>4173–4190</td>
</tr>
<tr>
<td>L2 3'</td>
<td>5'-GCC TAG GCC ACA GAC GAG TCT G-3'</td>
<td>Sense</td>
<td>L1</td>
<td>5459–5573</td>
</tr>
<tr>
<td>L1 2'-3'</td>
<td>5'-GTC TCT GAG GGC TAG CCA GGA G-3'</td>
<td>Antisense</td>
<td>L1</td>
<td>5554–5577</td>
</tr>
<tr>
<td>L1 3'</td>
<td>5'-TAG CAC TGC TGC CGT G-3'</td>
<td>Antisense</td>
<td>L1</td>
<td>5657–5672</td>
</tr>
<tr>
<td>L1 3'</td>
<td>5'-GCT GGT GTA GTG GAT GGT GAG G-3'</td>
<td>Antisense</td>
<td>L1</td>
<td>7016–7041</td>
</tr>
</tbody>
</table>

* Corresponding to the sequence and numbering of HPV31 (10).
* ORF or region of HPV31.

MATERIALS AND METHODS

Cell and tissue culture, histological analyses, and electron microscopy. The CIN-612 cell line was established from a cervical intraepithelial neoplasia (CIN) grade 1 (CIN I) biopsy and contains HPV31b DNA (2). In the CIN-612 clonal derivative 9E, the HPV31b genome is maintained episomally at ~50 copies per cell (2, 15). CIN-612 9E cells were maintained in EM medium with mitomycin-

Nucleic acid extraction and RNA PCR analyses. Total cellular DNA was harvested as previously described (2). Total RNA was extracted from tissues and subconfluent monolayer cultures by using TRIzol reagent (Gibco BRL, Bethesda, Md.). To remove copurifying viral and cellular DNA, the RNA samples were treated with DNAase I (1). DNAase I-treated total RNA was reverse transcribed by using oligo(dT)12-18 or random hexamer primers, and PCR was performed by using a GeneAmp RNA PCR kit as instructed by the manufacturer (Perkin-Elmer, Branchburg, N.J.,). All PCR primers (Table 1) were synthesized by Operon Technologies (San Diego, Calif.) and were used at 0.5 μM. The thermocycling profile was as follows: 4-min time delay at 94°C; 35 cycles of 94°C for 30 s, 58 to 60°C for 1 min, and 72°C for 2 min; concluding with a 15-min extension at 72°C.

Northern blotting and hybridization. Total RNA samples (20 μg) were separated on 1% agarose–0.66 M formaldehyde gels as described previously (1). The RNA was transferred to GeneScreen Plus membranes (NEN Research Products, Boston, Mass.), which were handled according to the manufacturer’s instructions. For PCR-generated probes, primers L2 5' and L2 3' (Table 1) were used to amplify a 1,401-bp fragment of the L2 ORF from pBR-HPV31 (a gift from H. zur Hausen), including HPV31 nt 5554 to 7041. DNA sequences were labeled with [α-32P]dCTP (3,000 Ci/mmol; DuPont NEN), using a Random Primed DNA labeling kit (Boehringer Mannheim Corp., Indianapolis, Ind.) according to the manufacturer’s instructions. Labeled probe was separated from unincorporated nucleotides by centrifugation through a Sephadex G-50 column (Boehringer Mannheim Corp.). Hybridization was carried out with 5 × 10^6 to 1 × 10^8 cpm per ml of appropriate probe, and the membranes were washed to remove non-specific hybridization and then exposed to Reflection film with intensifying screens (DuPont NEN).

Cloning and sequencing. pGOZ31-L1 was constructed by inserting the 216-bp PstI fragment of the pBR-HPV31 L1 region (HPV31 nt 6705 to 6921) in pGEM-3Zf(+) (Promega Corp., Madison, Wis.). PCR products were cloned by using a TA cloning kit (Invitrogen, San Diego). The G+C concentrications were based on a Phadex G-50 column (Boehringer Mannheim Corp.). Sequencing and cloning of the 1,401-bp PCR product generated with primers L2 5' and L2 3' on pBR-HPV31, as described above. The partial cDNA constructs pCR31b-E6L1, pCR31b-E7L1, pCR31b-E6L2, and pCR31b-E7L2 were generated by TA cloning from RNA PCR products (see Fig. 5). Subsequent cloning was performed by using standard techniques (37). p31URRE was made by ligating the 795-bp AccI-PvuII fragment from pBR-HPV31 (HPV31 nt 7238 to 121 [see Fig. 5]) into pGEM-3Zf(−). The URR was added upstream of each of the partial cDNA constructs pCR31b-E6L1 and pCR31b-E6L2 by ligating the AccI-PvuII URR fragment from p31URRE to the PvuII site (HPV31 nt 121) at the 5' end of each of the DNA. Then the resulting constructs were designated p31U*E6L1 (Fig. 7, construct A) and p31U*E6L2 (Fig. 7, construct E), respectively. Each of the URRs was therefore ligated to the 5' ends of p31U*E6L1 and p31U*E6L2, respectively. The resulting constructs were designated p31U*E6L1, p31U*E6L2, and p31U*E6L3 (Fig. 7, constructs D, C, and B, respectively). The constructs shown in Fig. 7 collectively were named the URR(6)–late constructs.

URR-late gene constructs which contained the full E6 ORF, in place of the E6 region, were also created. p31b-URRE was made by TA cloning the 2,604-bp PCR product generated with primers URR 5' and E1-3' (see Fig. 5) and total DNA from C8-treated CIN-612 9E rafts harvested at 8 days. p31b-URRE was digested with an enzyme which cut in the 5' MCS and with BanII to release the URR, E6, E7 region (HPV31 nt 7381 to 811). Each of the URR(6)–late constructs also was digested with an enzyme specifically cleaving within the 5' MCS with BanII to remove the URR(6)–late constructs. The URR(6)–late constructs were identified by the manufacturer (Ambion Inc., Austin, Tex.). p31b-URRE was digested with BanII and treated with RNase T1, and the resulting constructs were designated p31b-URRE1, p31b-URRE2, p31b-URRE3, and p31b-URRE4 (respectively, not shown). The plasmids were designated the URR(6)–late constructs.

Double-stranded DNA sequencing was performed by the dyeclip method according to the protocol for Sequenase version 2.0 (United States Biochemical, Cleveland, Ohio). The reaction products were separated on 7% polyacrylamide–8 M urea sequencing gels.

RNase protection assays (RPAs). Antisense RNA probes were synthesized by using [α-32P]dCTP (800 Ci/mmol; DuPont NEN) and a MAXI script/RPA II kit as instructed by the manufacturer (Ambion Inc., Austin, Tex.). PCR31-L2 was digested with DdeI, which yielded a 300-nt antisense probe predicted to protect 221 nt of the L2 ORF. pGOZ31-L1 was linearized with HindIII, which gave a 271-nt riboprobe expected to protect 216 nt of the L1 ORF. PCR31b-E6L1 was digested with HindIII, giving rise to a 336-nt riboprobe predicted to protect 257 nt of the E7; E1*–E4* transcript. Purified RiboGen of pCR31b-E6L1 yielded a 383-nt antisense probe. The riboprobe was predicted to protect 315 nt of the E7, E1*–E4* transcript and 194 nt of transcripts containing the region E7, E1*. Full-length probes were gel purified on 7 M urea–5% polyacrylamide gels. The probes were eluted from gels in 0.5 M ammonium acetate–1 mM EDTA–0.1% sodium dodecyl sulfate for 3 to 12 h at 37 to 50°C. By using the RHA II kit, 15 to 20 μg of total RNA or yeast RNA was hybridized with 4 × 10^6 cpm of the appropriate probe at 43°C for 16 to 20 h. Unhybridized RNA was digested with 500 U of RNase T1 per ml. Samples were analyzed by electrophoresis through a 7 M urea–5% polyacrylamide gel followed by autoradiography. RNA Century standards were prepared as described by the manufacturer (Ambion). The intensity of protected fragments was measured by scanning laser densitometry.

RNA concentration was determined on optical density; concentrations were verified by electrophoresis in agarose gels and staining with ethidium bromide.

S1 and exon VII protection assays. Probes for nuclease S1 (S1) and exonuclease VII (exon VII) nuclease protection analyses were performed by PCR amplification using 5' and 3' labeled primer complementary to the sense strand of DNA (either L1-2' or L2-3') and an unlabeled primer complementary to the antisense
DNA strand [either M13(−40), 5′-GTTTTCCCAGTCACGAC-3′ (complementary to plasmid sequences 92 to 76 nt upstream of the HPV31 URR sequences), or URR 5′ (Table 1)]. Twenty picomoles of primer was 5′ end labeled by using 120 μCi of [γ-32P]ATP (6,000 Ci/mmol; DuPont NEN) in 70 mM Tris-Cl (pH 7.6)–10 mM MgCl2–5 mM dithiothreitol–50 μg of bovine serum albumin per ml–15 U of T4 polynucleotide kinase (New England Biolabs, Beverly, Mass.). Using 10 ng of each of the URRE6-late or URRE6-late constructs as the template, 30 cycles of PCR were performed as described above. Single-stranded, 5′-end-labeled probes were purified by electrophoresis through 7 M urea–3.5% polyacrylamide gels. Hybridizations and S1 digestions were performed with an S1-Assay kit (Ambion) as instructed by the manufacturer. Eco-VII digestions were performed as described previously (4). Forty micrograms of total RNA or yeast RNA was hybridized with 106 cpm of each probe at 43°C for 16 to 20 h. Unhybridized nucleic acids were digested with 250 U of S1 (Ambion) per ml or with 80 U of exoVII (Gibco BRL) per ml. Samples were analyzed by electrophoresis through a 7 M urea–4% polyacrylamide gel followed by autoradiography.

RESULTS

Temporal stratification of CIN I epithelium in the organotypic culture system. In the organotypic (raft) culture system, the differentiation of cells isolated from biopsies of CIN lesions or cervical carcinomas morphologically mimics that of their in vivo counterparts (2, 5, 27, 31, 34). Addition of protein kinase C (PKC) pathway activators, such as C8:0, to the raft culture medium induces a more complete differentiation program (28, 31). To demonstrate the temporal stratification of the CIN I-derived CIN-612 9E cell line in the organotypic culture system, C8:0-treated CIN-612 9E rafts were harvested for paraffin embedding on various days following lifting to the air-liquid interface. Thin sections of the raft cultures were histochemically stained with hematoxylin and eosin. On day 2, a single layer of epithelial cells was observed (Fig. 1A). By day 6, the spinous layer was evident and a thin corneum was beginning to develop (Fig. 1C), and on day 8, the granular layer became visible (Fig. 1D). Over the 2-week period, the tissue thickened, forming a stratified epithelium (Fig. 1) closely resembling tissue from a CIN I lesion (2, 5, 20, 34). The lower third of the epithelium contained basal-like cells, whereas differentiation occurred in the upper epithelium. In addition, koilocytic cells were observed in the upper layers beginning at
day 8 (Fig. 1D). These characteristics are typical of CIN I morphology associated with HPV infection (20).

Temporal expression of L1- and L2-containing transcripts in untreated rafts and rafts induced to differentiate and support the vegetative life cycle of HPV31b. The more complete differentiation of CIN-612 9E rafts upon PKC activation is accompanied by a strong induction of HPV31b late gene expression and the assembly of virions (9, 16, 28). We analyzed the temporal expression of L1 and L2 transcripts by performing Northern blot hybridization on total RNA harvested from untreated CIN-612 9E monolayer cells and from C8:0-treated CIN-612 9E rafts harvested at 4, 8, 12, and 16 days after lifting to the air-liquid interface (Fig. 2). Consistent with previous reports (2, 16), we detected two size classes of HPV31b late gene transcripts. Both L1 and L2 probes identified transcripts of 4.4 kb. A diffuse band corresponding to a 2.4- to 2.6-kb size class was detected with the L1 probe in the RNA from 12 day rafts (Fig. 2B, lane 12d). In the treated rafts, after little expression on day 4, expression of both L1 and L2 transcripts peaked at day 12. It was striking that the levels of L1 and L2 RNAs decreased dramatically by day 16 in the raft system. As reported by Bedell and coworkers (2), we detected the larger late gene transcripts in the lanes containing RNA from untreated monolayers. We did not detect the smaller L1 transcripts in the monolayer cultures; however, it was unclear whether this inability reflected the sensitivity of the assay. Coincident with the peak of late gene expression between 8 and 12 days, we observed viral particles as early as day 10 by electron microscopy of raft tissue cross sections (Fig. 3).

To quantitate the relative changes in temporal L1 and L2 mRNA expression among CIN-612 9E untreated monolayer cultures, untreated rafts, and C8:0-treated rafts, samples were analyzed with antisense RNA probes specific to 3′ internal regions of the L1 and L2 ORFs (Fig. 4C). The L2-specific riboprobe protected the expected 221-nt fragment of RNA (Fig. 4A), whereas the L1-specific riboprobe protected a 216-nt fragment (Fig. 4B). For the two probes, the RPA patterns were similar and exhibited temporal expression patterns consistent
with the results of the Northern analyses. Monolayer cultures of CIN-612 9E cells were found to express both L1 and L2 RNAs (Fig. 4A and B, lanes M). The L1 and L2 transcript levels peaked at day 12 in untreated and C8:0-treated CIN-612 9E rafts. However, PKC-induced rafts had greater levels of late gene mRNAs than did their untreated counterparts (compare lanes 12d in Fig. 4A and B). The relative changes in the levels of late gene mRNAs were determined by densitometric scanning (Fig. 4D). The results indicate that PKC induction led to an increase in the levels of late gene transcripts. This representation clearly illustrates the striking peak in the expression of late gene RNAs in the raft system at day 12 and the significant drop in expression by day 16. The levels of L1-containing transcripts were two times those of the L2-containing RNAs at day 12, whether the raft tissues were treated or untreated. These data were representative of several analyses using different preparations of RNA.

Cloning and sequencing of late gene transcripts expressed during the HPV31b life cycle. To define the structures of late gene mRNAs expressed in CIN-612 9E raft tissues, rafts were treated with C8:0 for 12 to 16 days and then harvested. Total RNA was extracted from rafts, DNase I treated, and subjected to reverse transcription. PCR was performed with various primer pairs (Table 1). Primers E6 5'-E7 5' were paired with primer L1-2 3' or L2-3 3' to assay for cDNA molecules containing L1 or L2 sequences, respectively (Fig. 5). Three novel HPV31b cDNA structures contained the L1 region (Fig. 5, transcripts A to C). Another L1-containing cDNA (Fig. 5, transcript D) and an L2 cDNA (Fig. 5, transcript E) were similar to transcripts previously reported (16). Structures of the transcripts were determined from the cloned cDNAs; however, we will subsequently refer to them as RNA transcripts. In each transcript, the E1 splice donor at HPV31b nt 877 was used. In one transcript, following the E6* and E7 ORFs, the E1 donor was spliced directly to the L1 splice acceptor at nt 5552, the first base of the first AUG translational start for the L1 ORF (Fig. 5, transcript A). This splice was predicted to result in the termination of translation 17 nt downstream of the L1 AUG (fused ORF designated E1*). All other late gene transcripts contained the E1*E4 splice (Fig. 5, transcripts B to E). The E7,E1*E4,L1 transcript included E7 and the E1*E4 region to nt 3322 spliced to a nonconsensus site at nt 4369 in the L2 region, out of frame (Fig. 5, transcript B). The transcript went on to splice from nt 4422 to the AUG in the L1 ORF at nt 5552. The predicted E1*E4* protein encoded by this transcript should contain 15 amino acids of E1*E4, 18 amino acids in the L2 region (out of frame with L2), and 21 amino acids out of frame in the L1 ORF (Fig. 5, transcript B). The E1*E4,E5*,L1s transcript (Fig. 5, transcript C), which potentially encodes a normal E1*E4 fusion protein, continued past the E4 splice donor at nt 3590. This tricistronic transcript used a nonconsensus splice donor at nt 3832 and a nonconsensus acceptor site in L1 at nt 5555 (Fig. 5, transcript C). Beginning with the E5a start codon at HPV31 nt 3816, the transcript could potentially encode a 26-amino-acid E5a fusion (E5*) that terminates out of frame in the 5' L1 region, similar to E1*E4*. Finally, in this transcript, the first AUG of the L1 ORF was spliced out, leaving the second in-frame L1 AUG at 5999 as the first available start site. Translation initiated at this site is predicted to give rise to a smaller L1 protein containing the C-terminal 355 amino acids of the full-length 504-amino-acid L1 protein. The structure of

FIG. 4. RPAs quantitating the levels of HPV31b L1 and L2 transcripts. CIN-612 9E cells were cultured as monolayers (M) or on rafts; the rafts were either untreated or treated with 10 μM C8:0 every second day. Rafts were harvested following lifting to the air-liquid interface after 4 days (4d), 8 days (8d), 12 days (12d), and 16 days (16d) as indicated. Twenty microliters of DNease I-treated total RNA or yeast RNA (Y) was analyzed. Two yeast RNA samples were included as controls; the leftmost was RNase digested to show probe specificity, and the rightmost was RNase digested to indicate the size of the input probe. The sizes of the probes and predicted sizes of the protected fragments are indicated to the left of panels A and B, and RNA Century markers (Ambion) are indicated to the right. (A) Probe is specific to the 3' internal L2 ORF (HPV31 nt 5353 to 5573). (B) Probe is specific to the 3' internal L1 ORF (HPV31 nt 6705 to 6921). (C) Schematic of HPV31b late region with riboprobes illustrated. (D) Densitometric data from panels A and B; autoradiograms were scanned in the regions containing the full-length protected fragments. Absolute readings were plotted and represent the relative changes during stratification and differentiation. Open boxes, L1 expression in untreated rafts; closed boxes, L1 expression in C8:0-treated rafts; lightly striped boxes, L2 RNA expression in untreated rafts; heavily striped boxes, L2 expression in C8:0-treated rafts.
the E1\(^\text{E4,L1}\) transcript was reported previously and would encode E1\(^{\text{E4}}\) and L1 proteins (Fig. 5, transcript D) (16). In addition, we characterized a transcript structurally similar to the E1\(^{\text{E4,E5,L2,L1}}\) mRNA described in the same study (16). However, our transcript included the sequences for E6\(^*\) and E7, well upstream of the P742 promoter assigned to this RNA (Fig. 5, transcript E). Thus, our transcript contained ORFs E6\(^*\), E7, E1\(^{\text{E4}}\), E5a, E5b, L2, and L1.

Verification and temporal expression of specific late transcripts by RPAs. RPAs using cDNA-derived probes were performed for two reasons. First, we wished to verify that the cDNAs cloned from RNA-PCR products represented authentic mRNA molecules. Second, we wanted to determine the temporal expression pattern of specific viral mRNAs during PKC-induced differentiation of the raft tissues. Total RNAs from C8:0-treated rafts were harvested at intervals following lifting to the air-liquid interface; representative results of these experiments are shown in Fig. 6. The cDNA clones from which sequence data in Fig. 5 (transcripts A to D) were derived served as templates for antisense RNA for RPAs. This strategy was not feasible for investigation of the L2 transcript (Fig. 5, construct E), as technical limitations precluded the synthesis of an antisense riboprobe of the length required for specificity. Our results verified that each of the L1-containing cDNA species represented viral RNAs (Fig. 6 and data not shown). Furthermore, the temporal expression levels of the L1-specific mRNAs were similar to each other, to the results obtained by Northern analysis (Fig. 2), and to the results obtained by RPA of the total L1 and L2 RNAs (Fig. 4). L1 expression was easily detected in RNA samples derived from untreated monolayer cultures of CIN-612 9E cells. Low levels of the L1 RNAs were observed in 4-day rafts, L1-specific RNA levels peaked in C8:0-treated rafts harvested at 12 days, and levels were significantly lower by 16 days (Fig. 6). The E7,E1\(^{\text{E4}}\)L1 probe also strongly protected 194 nt of RNA corresponding to the E7,E1\(^{\text{E4}}\) region (Fig. 6B). The E7,E1\(^{\text{E4}}\) region is contained in the majority of the early and late HPV31b transcripts thus far identified (15, 16, 31).
late gene transcripts actually initiates
More detailed analyses have demonstrated that this subset of A and B is a schematic of HPV31b illustrating the riboprobe sequences. pCR31b-E6L1 and is specific to 315 nt of E7,E1^II,L1 (E7,E1^L1; HPV31 nt 683 to 877^5552 to 5672). Predicted protection for E7,E1^ is 194 nt. Below panels is specific to 257 nt of E7,E1^E4*,L1 (HPV31 nt 823 to 877^3295 to 3322^4369 to 4422^5552 to 5672). (B) The probe is derived from HPV31b cDNA clone and B, respectively. RNA Century markers (Ambion) are indicated between panels A and B. (A) The probe is derived from HPV31b cDNA clone pCR31b-E7L1 and yeast RNA (Y) was analyzed. Two yeast RNA samples were included as controls; the leftmost was RNase digested to show probe specificity, and the rightmost was harvested following lifting to the air-liquid interface after 4 days (4d), 8 days (8d), 12 days (12d), and 16 days (16d) as indicated. Fifteen micrograms of total RNA or

7, arrowheads). There was no evidence of P 742 protection in

beled primer was M13(*40) (see Materials and Methods). 5' end-mapping of HPV31b late gene transcripts by S1 and exoVII protection assays. To map the 5' regions of the character-ized L1 and L2 transcripts, HPV31b sequences were cloned upstream of the 5' ends of the partial cDNAs obtained via RNA PCR and cloning (Materials and Methods, Fig. 5, and Fig. 7). Two sets of constructs were prepared for each late gene cDNA; the URRE6*-late constructs contained the URR, E6*, E7, E1^, and plus late sequences, whereas the URRE6-late constructs contained the URR, full-length E6, E7, E1^, and late sequences. Single-stranded, 5'-end-labeled probes were made from plasmid constructs by amplifying the region shown in Fig. 7 with a primer labeled at the 5' end. To ensure that the probes would be larger than the transcripts, the second, unla-beled primer was M13(−40) (see Materials and Methods). With each probe, we analyzed total RNA from CIN-612 9E monolayer cultures and C8:0-treated rafts harvested at day 12. Only results of assays using the URRE6*-late probes are shown (Fig. 7). Each URRE6*-late probe gave identical results in S1 and exoVII digestion assays. The exoVII-digested samples migrated slightly slower than the S1-digested samples, a common phenomenon when large amounts of RNA are ana-lyzed (4). Each URRE6*-late probe protected a product with a 5' end in the vicinity of P97 (Fig. 7, upward-pointing arrows). More detailed analyses have demonstrated that this subset of late gene transcripts actually initiates ~20 nt upstream of P97, at a novel HPV31b promoter which we designated P97 (32). Nevertheless, we are not able to rule out the possibility that late gene-containing transcripts are also initiated at P97. In each sample of 12-day C8:0-treated RNA, each probe also protected a doublet mapping 5' ends to the region of P97 (Fig. 7, arrowheads). There was no evidence of P97 protection in RNA samples derived from 9E monolayers (Fig. 7, lanes M). In addition, probes containing the E4 splice acceptor (Fig. 7, constructs B, C, D, and E) protected a fragment corresponding to a 5' end near the E4 splice acceptor sequences; we design-nated this promoter P E4 (32) (Fig. 7, downward-pointing arrows; data from probe E not shown). The P E4 protection prod-uct was observed in the monolayer-derived RNA samples, albeit at lower levels (Fig. 7B to D, lanes M). None of the techniques used thus far provided any evidence for late transcripts containing the full-length E6 ORF. As the use of cDNAs to perform nuclease protection experiments can mask unspliced regions, we created probe templates which were similar to the L1-containing constructs described above (Fig. 7, constructs A to E), but they contained the full-length E6 ORF in place of the E6* ORF. In addition to P E4 and P P42, the S1 assay revealed protected fragments with a 5' end at the E6* splice acceptor and a PE4 5' end. ExoVII, which lacks endonuclease activity, protected fragments corresponding to 5' ends at PE4, P P42, and P L (data not shown). Taken together, the results of S1 and exoVII protection assays using 5'-end-labeled URRE6-late probes indicated that a fraction of the RNAs initiating at P L contained the full E6 ORF. Based on the results of the nuclease protection assays (Fig. 6 and 7 and data not shown), we estimate approximately equal relative abundance of transcripts A, B, C, and E (Fig. 7). The transcript shown in Fig. 7D appeared to be present at lower levels relative to the others. Furthermore, the transcripts initiated from the PE4 and P P42 promoters were present at greater levels than those trans-cripts initiated from the P L region promoter. Figure 8 sum-marizes the structures of the late gene-containing transcripts, their putative promoters, and their coding potentials. There appeared to be three to four versions of each viral RNA structure characterized by RNA PCR. One version started at PE4 and contained E6, E7, and E1^; a second initiated at PE4 and contained E6*, E7, and E1^; and a third began at P P42. In addition, each transcript containing the E4 region had a start site in the area of the E4 splice acceptor at nt 3295 (P E4).
FIG. 7. S1 and exoVII nuclease protection analyses of HPV31b L1 transcripts. CIN-612 9E cells were cultured as monolayers (M) or as C8:0-treated rafts harvested at day 12 (R). Forty micrograms of total RNA or yeast RNA (Y) was hybridized and analyzed by digestion with S1 nuclease or exoVII nuclease as indicated. Two yeast RNA samples were included as controls; for each probe, the leftmost yeast RNA sample was nuclease digested to show probe specificity and the rightmost was not nuclease digested to indicate the size of the input probe. RNA Century markers (Ambion) and 5'-end-labeled φX174 DNA digested with HaeIII were used as standards, indicated at the right. Probe specificity is indicated at the bottom. The plasmids used as templates and the lengths of the probe species are as follows: (A) p31U*E6L1, 1,572 nt; (B) p31U*742L1, 1,900 nt; (C) p31U*2c5, 2,098 nt; (D) p31U*E7L1, 1,653 nt; (E) p31U*E6L2, 2,120 nt (data not shown). Upward-pointing arrows show a protection to the PL promoter. Arrowheads indicate protection corresponding to the P742 promoter. Downward-pointing arrows note protection to the Pe4 promoter (32).
DISCUSSION

We used the organotypic (raft) tissue culture system to characterize the structures and temporal expression patterns of HPV31b late gene transcripts during the complete viral life cycle. Our data show that PKC-induced CIN-612 9E tissues had undergone a program of differentiation by day 12 in the raft system, morphologically resembling the CIN I lesion from which the cells were originally derived (2, 34). Both untreated and PKC-induced CIN-612 9E tissues maximally expressed late gene transcripts around day 12 in the raft system. However, PKC induction resulted in higher levels of late gene transcript expression. In addition, clumps of viral particles could readily

FIG. 8. Structures of the late transcripts expressed during the life cycle of HPV31b. Open boxes indicate ORFs, with smaller stippled boxes illustrating overlapping ORFs. Thick black lines represent noncoding sequences. Dotted lines show regions spliced out of transcripts. The arrow at the 3' ends indicates that the transcripts likely proceed to the late polyadenylation site. The promoters are shown by bent arrows; polyadenylation sites are given as downward arrows. The basic RNA structures were characterized by RNA PCR and sequencing. Nuclease protection assays provided evidence that each basic structure has three to four different versions. The first set of these species have a transcriptional start at the P_L promoter, positioned ~20 nt upstream from P_E4 (32), and include a full-length E6 ORF (A, E, I, L, and Q). The second set uses the P_L promoter but contains the E6* ORF (B, F, J, M, and R). The third set of late transcripts start at the differentiation-specific P_74 promoter (C, G, K, N, and S). Lastly, the transcripts containing E4 sequences can use a translational start, P_E4, in the region of the E4 splice acceptor (D, H, P, and T) (32).
be observed in the PKC-activated CIN-612 9E tissues as early as day 10, indicating the late gene transcripts were functional for translation. Quantitative analysis of the levels of L1- and L2-containing transcripts showed that L1 transcripts outnumbered L2 RNAs by a ratio of 2 to 1. This is not surprising considering that L1 protein is expressed in excess of L2 protein in productively infected HPV1a cells (7). We found it striking that the levels of late RNAs decreased some 8- to 16-fold from days 12 to 16 in the rafts tissues. These data suggest that rafts harvested after day 12 are likely to be suboptimal for analyses of late genes.

Differentiation alone is not responsible for inducing transcription of late genes, as these transcripts were also detected in untreated monolayers, 4-day rafts, and 8-day rafts. Neither was induction of the PKC pathway required for late gene transcription. It has long been an assumption that proliferating monolayer cultures functionally resemble the mitotically active basal layer of the epithelium. However, we found that monolayer cultures consistently expressed higher total levels of late gene transcripts than did rafts harvested at 4 days, which consist predominantly of basal-like cells. This result suggests that proliferating monolayer cultures are not analogous to basal cells.

It is important to note that although late genes are transcribed at relatively high levels in monolayer cultures, the synthesis of capsid proteins in monolayers has not been reported. Likewise, late proteins have not been detected in untreated CIN-612 9E raft tissues even though a certain level of differentiation is achieved and late transcripts are readily detected in untreated rafts (2, 28, 33). These circumstances imply that some type of differentiation-specific translational control may be exerted over late gene expression. To our knowledge, investigations of translational control have been limited to undifferentiated monolayer cultures, and presently used techniques would be difficult to perform in epithelial tissues. It is also possible that there is induction of more translationally prone late mRNAs during the differentiation process than in monolayers. For example, there may be a difference in the late gene RNA stability or processing at the 3’ ends that our assays have not addressed. Late gene transcripts initiating at P742 were undetectable in monolayer cultures but greatly upregulated in PKC-induced raft tissues (Fig. 7 and references 15 and 16). Thus, we favor the theory that these higher levels of late gene transcripts in the differentiating tissues provide a threshold needed to produce a critical mass of capsid proteins, permitting detection by techniques such as Western blotting and immunochemical staining. For reasons detailed below, we also believe that these P742-initiated transcripts are most likely to be translated into late proteins. Also in support of our theory is the finding that HPV31b E1 – E4 transcripts are detected in monolayers and rafts; however, E1 – E4 transcripts from P742 are greatly upregulated in rafts (15). E1 – E4 proteins can be detected in CIN-612 9E monolayers, untreated rafts, and PKC-induced rafts but levels are highest in the latter (33).

Thus, we believe that late proteins may be synthesized in monolayers and untreated rafts but are present at levels below the sensitivity of currently used techniques.

The HPV31 late region-containing transcripts can be grouped either by promoter usage or by general splicing patterns (Fig. 8). We detected two to three possible 5’ ends (promoters) for the late gene-containing RNAs (e.g., Fig. 8, transcripts A, C, and D) and five general patterns of splicing (e.g., Fig. 8, transcripts A, E, I, L, and Q). Further, our analyses showed that individual RNA structures had well-defined and reproducible temporal expression patterns during the viral life cycle. For these reasons, we believe the cDNAs were derived from bona fide viral RNAs. However, because we analyzed total RNA and not cytoplasmic RNA, it remains a possibility that some of the RNA structures identified represent precursor RNAs and not cytoplasmic mRNA species. A subset of the late transcripts used a promoter that we mapped ~20 nt upstream of the P742, early promoter (32). We designated this promoter P7L, for late promoter. For transcripts using P7L, a subset contained the full-length E6 and E7 ORFs, whereas others contained the E6* and E7 ORFs. Consistent with an earlier report, we found strong use of the differentiation-specific P742 promoter in CS0-treated rafts (16). In addition, we found a subset of the late transcripts which contained E4 sequences used as promoter, P7E4, near the E4 splice acceptor (32).

Different promoter usage combined with various splicing patterns gave rise to a complex array of HPV31b late gene transcripts. Two transcripts initiating at P742, shown as C and G in Fig. 8, were described previously (16). However, our data showed that these transcripts exist in other forms, initiating at P7L and at P7742. These first two sets of transcripts contain the E1 – E4,E5a,E5b,L2,L1 ORFs (transcripts A to C) and E1 – E4,L1 ORFs (transcripts E to G). The third set of transcripts (I to K) potentially encode an 11-amino-acid fusion protein, E1*II, and L1. The fourth set of late gene RNA structures (L to N) potentially encode a novel 54-amino-acid fusion protein, E1 – E4*, and L1. The fifth set of transcripts (Q to S) has the potential to encode E1 – E4 plus two previously unidentified ORFs, E5* and L1s. The E5* ORF should encode a 26-amino-acid fusion protein. The L1s ORF should encode a truncated L1 protein, beginning at the second in-frame L1 AUG, predicted to be ~40 kDa, compared to a full-sized L1 of ~55 kDa. Smaller L1 proteins have been detected in purified HPV1a virions and in cells expressing L1 ORFs of HPV1, -6, -11, -16, and -33 (7, 12, 18, 19, 36, 39, 49). These were presumed to be breakdown products; however, our data suggest that the synthesis of smaller L1 proteins can arise from transcripts initiated from an internal AUG(s). Transcripts initiating at P742 (D, H, P, and T) would not encode the E1 – E4 fusion due to the absence of the E1 AUG. The first ORFs in transcript D are E5a and E5b. The first translational start in transcript H is the L1 AUG. A second in-frame AUG in the E1 – E4* ORF from transcript P should initiate the 34-amino-acid E4*II fusion. Transcript T maintained the E5* and L1s ORFs.

The prominent question raised by these data is, why are there so many structurally polycistronic transcripts containing the late ORFs? One possibility is that the transcription of any ORF past the early polyadenylation signal includes the L1 and L2 ORFs merely as transcriptional readthrough to the late polyadenylation signal. If so, the presence of the late ORFs in the majority of these transcripts may be insignificant with respect to the translation of the late ORFs. Elegant and thorough analyses of the variables governing translational efficiencies of ORFs in polycistronic mRNAs have been performed by Kozak (21, 22). Numerous viruses express mRNAs that are structurally polycistronic. However, most evidence suggests that these mRNAs are functionally monocistronic and that AUG context determines whether translation of a downstream AUG is favored (21). The majority of the transcripts that we characterized contain the E6 or E6*, E7, and/or E1 – E4 ORFs, which have AUG contexts that remain constant upstream of L2 or L1. Thus, based on Kozak’s work, these transcripts may not be responsible for efficient expression of late gene products. Certain transcripts initiating at P7742 (Fig. 8, transcripts C, G, and S) probably are required primarily to make E1 – E4, the major viral gene product (6). However, P742-initiated transcripts with a single ORF upstream of L1 (e.g., G, K, and N) likely contribute to L1 expression, especially...
in PKC-induced rafts where P₄₋₂₅ is greatly upregulated (reference 16 and our data). In addition, the P₄₋₂₅-initiating transcripts seem likely candidates for encoding the late proteins, as they contain no or one upstream ORF. Transcript D in Fig. 8 may be responsible for the expression of E5α, E5β, and L2 proteins expressed in relatively low amounts in virus-infected cells (7, 25). The early polyadenylation site occurs within the E5b ORF, making E5b the 5′-most ORF in the HPV31b genome which requires the late polyadenylation site. The P₄₋₂₅-initiated, E₁*-II-containing transcript, K, may also produce L1 protein. These conclusions must be tempered by the fact that the rules for translational efficiency are not based on studies in differentiated tissues, as indicated above. Finally, although we have no solid evidence for translational control, it is tempting to speculate that the putative E₁*-II, E₁*-E₄*, E₄*-III, and/or E₅* late proteins may be differentiation-specific accessory proteins which help determine which late RNAs are translated. The latter possibility might help to explain the role of the P₄*-initiating transcripts which, based on Kozak’s work, appear not to be functional for late gene translation.

In conclusion, we have described the structures and temporal expression patterns of HPV31b late gene transcripts. This study was possible only because we used the raft culture system, which permits duplication of the complete HPV31b life cycle in vitro. Late gene transcription peaks at day 12 in the raft system, concomitant with the observation of viral particles in the tissues. Seventeen novel transcripts and two new late promoters were identified. The transcripts have the potential to encode a number of characterized and putative late gene products, including E₁*-E₄, E₁*-E₄*, E₄*-II, E₅α, E₅β, E₅*, L₁, and L₂. We are presently investigating the ability of these RNAs to encode specific late proteins. We recently reported the biosynthesis of infectious HPV18 in primary keratinocytes transfected with HPV18 DNA and allowed to differentiate in the raft system (29). We expect that this procedure will allow the analysis reported here to be conducted on any naturally occurring HPV type or mutant for which cloned DNA is available. In addition, genetic analyses of viral late gene expression should reveal much about the regulation of late gene expression during cellular differentiation and viral morphogenesis.

ACKNOWLEDGMENTS

We are grateful to David J. Spector and Timothy J. Mayer for critical reading of the manuscript. We thank Felix O. Wettstein and Carl Baker for advice and helpful discussions.

This work was supported by Public Health Service grant CA-66316 from the National Cancer Institute (M.A.O.) and National Cancer Institute grant CA-64624 (C.M.).

REFERENCES

