Rotavirus Is Released from the Apical Surface of Cultured Human Intestinal Cells through Nonconventional Vesicular Transport That Bypasses the Golgi Apparatus

NATHALIE JOURDAN,1* MICHELE MAURICE,2 DANIELE DELAUTIER,3 ANNE MARIE QUERO,1 ALAIN L. SERVIN,1 AND GERMAIN TRUGNAN2

Institut National de la Santé et de la Recherche Médicale, CIF 94 07, Pathogénie Cellulaire et Moléculaire des Microorganismes Enterovirulents, Faculté de Pharmacie, Université Paris XI, 92296 Chatenay-Malabry Cedex,1 CIF 96 07, Signalisation Moléculaire et Physiopathologie de l’Adresse des Protéines dans les Cellules Épithéliales, Faculté de Médecine Saint Antoine, Université Paris VI, 75012 Paris,2 and U 327, Structure et Fonction des Cellules Hépatiques, Faculté de Médecine X. Bichat, Université Paris 7, 75018 Paris,3 France

Received 2 May 1997/Accepted 16 July 1997

Rotaviruses are nonenveloped viruses that infect enterocytes of the small intestine and cause severe infantile gastroenteritis. It was previously thought that rotavirus exits cells by lysis, but this behavior does not match the local pathogenesis of the virus. In this study, we have investigated the release of the simian rotavirus strain (RRV) from the polarized intestinal Caco-2 cells. We found that RRV is released almost exclusively from the apical pole of Caco-2 cells before any cells lyse. Using confocal laser scanning microscopy and drugs that inhibit vesicular transport, we studied the RRV transport route from the endoplasmic reticulum (ER) to the apical side of intestinal cells. We demonstrated that RRV exits from the ER through a carbonyl cyanide m-chlorophenylhydrazone-sensitive vesicular transport. RRV staining was never found within the Golgi apparatus or lysosomes, suggesting that the RRV intracellular pathway does not involve these organelles. This finding was confirmed by treatment with monensin or NH4Cl, which do not affect release of RRV. Electron microscopic analysis revealed RRV containing small smooth vesicles in the apical area and free virions outside the cell in the brush border, consistent with a vesicular vectorial transport of virus. These results may provide, for the first time, a cellular explanation of the pathogenesis of rotavirus.

Rotaviruses are nonenveloped, double-stranded RNA viruses that are recognized as the leading cause of infantile viral gastroenteritis worldwide (22). Rotaviruses exhibit marked tropism for the differentiated enterocytes of the intestinal epithelium (5). The intestinal mucosa, like other epithelia, forms a highly organized sheet structure, separating the external lumen from the internal milieu, and it therefore represents the initial target for pathogens. Consequently, the vectorial release of virus is of essential importance for viral pathogenesis. Indeed, viruses released from the apical membrane of epithelial cells are likely to produce a localized infection restricted to the epithelial surface. In contrast, viruses released at the basolateral membrane can spread to underlying tissues and cause a more general infection (55, 56).

Most of our knowledge on virus release mechanisms derives from studies on enveloped viruses. Their vectorial release from polarized cells has been extensively investigated in vivo and with cultured epithelial cells. In 1978 Rodriguez-Boulan and Sabatini reported that enveloped RNA viruses are released from MDCK cells in a polar fashion; vesicular stomatitis virus budded predominantly from the basolateral plasma membrane, whereas Sendai virus and influenza virus virions were released exclusively from the apical domain (37). Type C retroviruses where also observed to be shed preferentially from the basolateral membrane of polarized epithelial cells (43), and more recently human immunodeficiency virus type 1 was found to be preferentially released from the basolateral surface of intestinal HT-29-D4 cells (14). More detailed analysis revealed that polarized viral budding is preceded by the polarized localization of viral envelope proteins in the plasma membrane (31, 36, 41, 43). Enveloped viruses that bud at intracellular membranes are also asymmetrically released from polarized epithelial cells. Herpes simplex virus, which matures from the inner nuclear membrane, was found to follow a vesicular transport process to the basolateral domain of several different type of polarized epithelial cells (46). Bunyavirus (2, 8) and coronaviruses (39, 40) were also found to be released by a vectorial vesicular transport process.

In contrast, nonenveloped viruses have long been thought to be released following cell lysis (60); thus, their transport and release have been less thoroughly investigated. However, studies using simian virus 40 (SV40) (10) and poliovirus (61) have indicated that nonenveloped viruses may also be released before cell lysis, at a particular plasma membrane domain.

Rotavirus undergoes a unique maturation process. Immature subviral particles assemble in cytoplasmic viroplasm structures, bud through the endoplasmic reticulum (ER) membrane, and acquire a transient membrane envelope (32, 33). Subsequently, this membrane is lost (58), and the outer capsid protein VP7, retained in the ER, is folded into the subviral particles to form the definitive, mature viral particles (12). Until now, from studies using MA104 cells, rotaviruses were known to be retained in the ER lumen until cell lysis (1, 30). However, this nonpolarized embryonic rhesus monkey kidney cell line does not display any morphologic or functional characteristics of the rotavirus natural target cell. Moreover, viral spreading through cell lysis does not match recent data indicating that rotavirus may infect and multiply during more than
one cycle of replication, without cell death or membrane leaks (52). This observation correlates with in vivo data demonstrating that rotavirus may replicate without any histopathologic changes (6, 57).

The human intestinal epithelial cell line Caco-2, established from a human colon adenocarcinoma (15), has been shown to spontaneously display, after confluence, many of the morphologic and biochemical properties of mature enterocytes (34). These characteristics include cellular polarization with two plasma membrane domains, an apical one which faces the external lumen and a basolateral one which faces the internal milieu. The apical domain is characterized by a brush border membrane and the expression of intestinal hydrolases (34). Caco-2 cells have been recognized as one of the most efficient enterocyte-like models for studying interactions between enteropathogens and the intestine (26, 27, 47). Moreover, our group and others have reported that a cell culture-adapted rhesus rotavirus (RRV) is able to infect differentiated Caco-2 cells (20, 23, 52).

In this study, we have investigated the transport and release of the simian rotavirus strain RRV from the polarized intestinal Caco-2 cells. We found that RRV was released almost exclusively at the apical pole of Caco-2 cells before any cell lysis was detected. Using confocal laser scanning microscopy, electron microscopy, and drugs that inhibit the vesicular transport, we studied the RRV transport pathway from the ER to the apical surface of intestinal cells. Our results describe for the first time the existence of a nonconventional vesicular transport of RRV particles, from the ER to the apical plasma membrane of Caco-2 cells, that bypasses the Golgi apparatus and lysosomes.

**MATERIALS AND METHODS**

**Reagents.** Carbonic anhydrase m-chlorophenylhydrazone (CCCP), monensin, 1,4-diazabicyclo[2.2.2]octane (DABCO), and paraformaldehyde were purchased from Sigma (L’Isle d’Abeau Chesnes, France), Glycerol and propidium iodide were from DAKO (Dakopatts, Copenhagen, Denmark). Ammonium chloride was obtained from Prolabo (Paris, France). Products for cell culture were from Life Technologies (Erlangen, Germany). Transwell filters (0.4-μm pore size) were obtained from Costar (Dominique Dutcher, Brumath, France). The bicinechonic acid assay kit was purchased from Pierce (Interchim, Montluçon, France).

**Cell lines and culture conditions.** The Caco-2 cell line has been established from a human colon adenocarcinoma by J. Fogh (Memorial Sloan Kettering Cancer Center, Rye, N.Y.) (15). Cells were cultured (passages 60 to 90) in Dulbecco medium. The Caco-2 cell line has been established from a human colon adenocarcinoma by J. Fogh (Memorial Sloan Kettering Cancer Center, Rye, N.Y.) (15). Cells were cultured (passages 60 to 90) in Dulbecco modified Eagle’s medium supplemented with 20% heat-inactivated fetal bovine serum, 1% penicillin-streptomycin, and 1% nonessential amino acids (34). For viral infection studies, the cells were seeded at a density of 10,000 cells per cm² in tissue culture-treated polycarbonate Transwell filters containing pores of 0.4 μm in diameter. Apical and basal media were replaced at 2-day intervals from day 2. Infections were done late after confluency, i.e., after 20 days in culture. Maintenance of the cells was at 37°C in a 10% CO₂–90% air atmosphere.

**MA104 cells were cultured as previously described (20).**

**Virus.** RRV was obtained from J. Cohen (INRA, Jouy en Josas, France). Virus stock was generated in MA104 cells after a 24-h preincubation of the cells in a medium containing 0.5% of infection (MOI) of 0.002 PFU/cell. After adsorption at room temperature (9) at 37°C for 30 min, and MA104 cell monolayers were infected at a multiplicity of infection (MOI) of 10 PFU/cell in apical chambers for 1 h at room temperature. The inoculum was then removed, and fresh medium containing 0.5 μg of trypsin per ml was added. Infected cells were incubated at 37°C in a 10% CO₂-air atmosphere and were processed for experiments at 16, 18, 20, or 24 h postinfection (p.i.). In some experiments cells were infected through the basolateral domain. No difference in RRV replication and release under the two conditions of infection was observed.

**Measurement of virus release.** Apical or basolateral cell culture media from infected filter-grown Caco-2 cells were collected, and the titers of released virus were determined by plaque assay on MA104 cells as previously described (13). The cell-associated virus was removed from cells by two cycles of freeze-thawing. The cell debris was pelleted by centrifugation at 600 × g, and virus titers present in the supernatant were determined by plaque assay.

**Measurement of cell viability and monolayer integrity.** (i) Desquamation. The desquamated cells from infected and mock-infected Caco-2 monolayers were counted with a hemocytometer.

(ii) Measurement of transepithelial electrical resistance. Transepithelial electrical resistance of polarized infected and mock-infected Caco-2 cells grown on Transwell filters was measured by using an Millicell-ERS apparatus (Millipore S.A., Saint-Quentin en Yvelines, France). Results were expressed as ohms times square centimeters.

(iii) LDH release. The lactate dehydrogenase (LDH) activity in the culture medium was assayed by measuring the oxidation of NADH with pyruvate as a substrate at 340 nm with an Enzyline LDH kit (Biomerieux, Paris, France) according to the manufacturer’s instructions. Protein was assayed with the bicinchoninic acid assay (Pierce). Results were expressed as milligrams of LDH activity per milligram of protein in cell monolayers.

**Antibodies and lectin.** Rabbit polyclonal antirotavirus antibody (8148) was a gift from Jean Cohen. Rat monoclonal anti-dipetidyl peptidase IV (anti-DPP IV) antibody (4H3) was a gift from C. Taylor. Mouse monoclonal anti-Lamp-1 antibody (BB6) was a gift from S. R. Carlsson (7). Mouse monoclonal anti-protein disulfide isomerase (anti-PDI) antibody was obtained from StressGen (Tebu, Le Perray en Yvelines, France). Fluorescein isothiocyanate (FITC)-conjugated rabbit anti-rat immunoglobulin G (IgG) was purchased from Sigma. Tetramethyl rhodamine isothiocyanate (TRITC)-conjugated goat anti-rabbit IgG (Santa Cruz Biotechnology, Santa Cruz, CA). FITC-conjugated goat anti-mouse IgG was purchased from Jackson ImmunoResearch Laboratories (Interchim). FITC-conjugated wheat germ agglutinin was obtained from Boivall (Conches, France).

**Immunofluorescence and confocal laser scanning microscopy.** Caco-2 cells cultured on Transwell filters were fixed with 2% paraformaldehyde for 15 min at room temperature, washed three times with phosphate-buffered saline (PBS), and then permeabilized with 0.2% Triton X-100 in H₂O. After three washes in PBS, they were stained for RRV, DPP IV, PDL, or Lamp-1 by incubation with the antibodies described above for 60 min at room temperature. After three washes in PBS, incubation with an FITC- or TRITC-conjugated second antibody was performed for 45 min. For double labeling, the respective antibodies were applied sequentially. After the last wash, fixed cells were incubated for 10 min with 1,4-diazabicyclo[2.2.2]octane antifading reagent and mounted with glycerol-gel. Fluorescence was observed with a Leica TCS equipped with a DMR inverted microscope and a 63/1.4 objective. A krypton-argon mixed-gas laser was used to generate two bands: 488 nm for FITC and 568 nm for TRITC. A band pass filter was used to recover FITC fluorescence, and an LP 590 filter was used for TRITC. Both fluorochromes were excited and analyzed in one pass with no interference between the two channels. Image processing was performed with the on-line Scan Ware software. Numeric images were transferred on a Power Mac 8100 equipped with an image analysis station (Image 1.57 and Photoshop), and mounted images were printed on a Kodak XLS 8600 PS printer.

**Electron microscopy.** Filters were rinsed three times with PBS, and the cells were fixed with 2.5% glutaraldehyde in 0.1 M sodium phosphate buffer (pH 7.4) for 30 min at room temperature. After being washed with PBS, they were postfixed for 30 min at room temperature with 1.5% osmium tetroxide in sodium phosphate buffer. The filters were then dehydrated in ethanol, cut into strips, and embedded in epoxy resin. Ultrathin sections were double stained with uranyl acetate and lead citrate and examined with a Jeol JEM-1010 electron microscope.

**RESULTS**

RRV is released almost exclusively from the apical domain of intestinal polarized Caco-2 cells before cell lysis. In order to determine whether RRV release from Caco-2 cells is polarized and to establish the time course of virus release, the apical and basolateral media of RRV-infected Caco-2 cells were examined for yields of progeny virus. At various times after infection of filter-grown Caco-2 cells, the virus titers in the apical and basolateral culture media were determined. Intracellular progeny virus not yet released was also quantitated. As seen in Table 1, an almost exclusive apical release of RRV from the Caco-2 cells was observed at 18, 20, 24, and 24 h postinfection. With virus titers in the apical chambers representing 99.9% of the extracellular virus, the time course study reveals that the release increased from 18 to 24 h p.i., at a time at which less than 4% of virions were detectable in cell monolayers. At 48 h p.i., basolateral virions represented 16% of total released virions, and by
We investigated cell viability and monolayer integrity at 24, 48, and 72 h.p.i. As assessed by transepithelial resistance (Fig. 2A) or by cell desquamation (Fig. 2B), there was no significant change in monolayer integrity within the first 24 h.p.i. Moreover, the very low LDH release measured in the apical medium revealed no loss of membrane integrity at 24 h.p.i. (Fig. 2C). Monolayer disruption and membrane injury were detectable only from 48 h.p.i.

72 h.p.i., the same quantities of virions were detected in the apical and basolateral chambers. It should be noted that at 48 and 72 h.p.i., the total yield of progeny virus was not significantly higher than that released at 24 h.p.i. As early as 24 h.p.i., RRV was released at similar levels in both the apical and basolateral media of nonintestinal and nonpolarized filter-grown MA104 cells.

To gain more information about RRV release, we observed Caco-2-infected cells by using confocal laser scanning microscopy. Caco-2 cells were fixed with paraformaldehyde, permeabilized with Triton, and double labeled with a polyclonal anti-group A rotavirus antibody and a monoclonal antibody directed against DPP IV, a brush border intestinal hydrolase specifically located at the apical plasma membrane (59). The distributions of RRV and DPP IV were analyzed at 24 h.p.i., and both were found at the apical surface (Fig. 1A). Figure 1B shows the release of virions from an intact apical brush border. These observations correlated well with the quantitative data described above.

![Image](http://jvi.asm.org/)
Together these data indicate that rotavirus is released efficiently from the apical surface of Caco-2 cells at 24 h p.i., before cell lysis and monolayer disruption, which take place at 48 and 72 h p.i.

**RRV particles exit from the ER through a CCCP-sensitive event.** The intracellular pathway of RRV between the ER and the apical plasma membrane was investigated by using immunofluorescence staining. In mock-infected Caco-2 cells, PDI, a luminal ER resident protein, was found as expected in vesicular structures organized in a polarized fashion mostly at the top of the nucleus (Fig. 3A). Rotavirus infection induced dramatic changes in the ER structure as early as 16 h p.i. The PDI antibody stained irregular vesicular structures that corresponded to an obvious ER swelling (Fig. 3B). However, the perinuclear distribution of the ER is conserved, as can be seen on the vertical section (Fig. 3B). By using double labeling, it was possible to show that ER swelling was caused by RRV accumulation (Fig. 4A), whereas the ER displayed a normal structure in noninfected neighboring cells. Interestingly, at 18 h p.i. (not shown) and more obviously after 24 h p.i., RRV and ER staining were clearly distinct (Fig. 4B), thus suggesting that viral particles had been transported out of the ER. This was confirmed by using CCCP, an uncoupler of oxidative phosphorylation, which is known to block transport out of the ER because this is an ATP-dependent event (54). RRV-infected Caco-2 cells were incubated from 16 to 24 h p.i. with 10 mM CCCP, which was added late enough during the replication cycle of RRV in Caco-2 cells so as not to affect viral replication, protein assembly, or maturation by budding through the ER membrane. At 24 h p.i., in untreated RRV-infected cells, PDI and rotavirus particles were no longer found in the same structures (Fig. 4B). By contrast, PDI and rotavirus particles were still completely colocalized in CCCP-treated cells (Fig. 4C). Cells were also assayed at 20 and 24 h p.i. for titration of apical, basolateral, and intracellular progeny virus. Between 20 and 24 h p.i., while in control cells intracellular virions decreased and apical virions increased, in CCCP-treated cells apical release was completely blocked and virions were maintained intracellularly (Fig. 5A). These results indicate that CCCP treatment efficiently inhibited extracellular release of newly synthesized RRV particles. It should be noted that the total amount infectious virus recovered in the cell supernatants and within cells was not significantly different in CCCP-treated cells compared to untreated ones (Fig. 5B), indicating, as expected, that CCCP treatment did not affect virion replication, assembly, and maturation.

**RRV particles bypass the Golgi apparatus.** In order to identify a possible acceptor compartment for RRV particles between the ER and the apical membrane, we performed double labeling of RRV particles and the Golgi apparatus. The Golgi apparatus was labeled with the wheat germ agglutinin lectin, which interacts with oligosaccharides decorating glycoproteins trimmed in the Golgi stacks (53). No colocalization between RRV and the Golgi apparatus could be observed (not shown), therefore suggesting that transport of RRV to the apical surface does not pass through the Golgi apparatus. This was confirmed by using monensin, a sodium ionophore known to inhibit vesicular budding from the Golgi complex (35). RRV-infected Caco-2 cells were incubated from 16 to 24 h p.i. with 10 mM monensin and were assayed for intracellular and extracellular virus. Monensin treatment did not block virus release, since at 20 h p.i., only 10% of the total progeny virus remained intracellular and the virus was almost completely released between 20 and 24 h in treated as well as untreated cells (Fig. 5A). It was particularly interesting that the monensin treatment impaired the vectorial release of RRV. Indeed, at 20 h p.i. 14.7% of the total virus was detected in the basolateral medium, while only 0.01% was detected in control cells.
thermore, between 20 and 24 h p.i. equal quantities of virus had been released in the apical and the basolateral media (Fig. 5A). Like for CCCP, monensin treatment did not affect virion replication, assembly, and maturation, since the same amounts of total infectious virus were recovered in monensin-treated and untreated cells (Fig. 5B).

**RRV particles do not transit through the lysosomal compartment.** Whether the intracellular route of RRV virions includes a transient passage within lysosomes was determined by immunolabeling of Lamp-1, a well-known lysosomal membrane protein (7). In mock-infected Caco-2 cells, Lamp-1 staining revealed numerous small vesicles spread throughout

![Image of RRV and ER localization](https://example.com/image.png)

**FIG. 4.** RRV and ER localization at 16 h p.i. (A) and 24 h p.i. (B) in infected cells or at 24 h p.i. in infected cells treated with CCCP (C). At the indicated times p.i., cells were fixed, permeabilized, double stained by indirect immunofluorescence, and analyzed by confocal microscopy. RRV virions were immunostained with polyclonal anti-group A rotavirus antibodies and rhodamine-labeled anti-rabbit IgG antibodies. The ER marker PDI was stained with mouse monoclonal anti-PDI and fluorescein-coupled anti-mouse IgG antibodies. For each line the same horizontal focus (xy) is shown, displaying ER distribution (left) or ER and RRV distributions (middle). ER and RRV distributions on a vertical section (xz) are shown on the right. (A) In a focus plane obtained at the nucleus level, ER labeling reveals dilated ER structures. At 16 h p.i., RRV labeling is exactly localized in these dilated structures. Colocalization is demonstrated by the yellow color in horizontal and vertical sections. (B) At 24 h p.i., RRV staining is localized mainly in a focus plane obtained above the nucleus. Horizontal and vertical sections reveal the segregation of ER and RRV labels. Moreover, the vertical section shows RRV label greater than that of the ER, suggesting that RRV exits from the ER. (C) Upon CCCP treatment, even after 24 h p.i., RRV labeling still colocalizes within the dilated ER structure, suggesting that CCCP inhibits RRV exit from the ER. Bars, 10 μm.
the cytoplasm (Fig. 6A), as previously shown (4). Although the size of the lysosomes was more heterogeneous in RRV-infected cells (Fig. 6B) than in control cells, it was not possible to show any colocalization between RRV and Lamp-1 (Fig. 6C). This was confirmed by using NH₄Cl, a lysotropotropic weak base known to have an inhibitory effect on lysosome functions (19). When RRV-infected Caco-2 cells were incubated from 16 to 24 h p.i. with 50 mM NH₄Cl, double immunostaining did not reveal any colocalization of rotavirus and lysosome markers (Fig. 6D and E). Moreover, virus titers in the apical and basolateral chambers were not changed by NH₄Cl treatment (Fig. 5A). All these observations argue against the transport of RRV virions through lysosomes.

Intracytoplasmic virions are restricted to vesicular structures; extracellular virions are free. To gain further insight into the intracellular pathway of RRV particles from the ER to the apical plasma membrane, infected Caco-2 cell monolayers were examined by electron microscopy between 20 and 24 h p.i.
Tight junctions and the plasma membrane appeared to be intact, and the microvilli lining the apical surface appeared roughly normal, with, however, some irregular or distorted shape. Electron-dense viral particles were seen in ER structures around the nucleus (Fig. 7A). Higher magnification of the perinuclear region (Fig. 7B) showed the accumulation of virion particles within dilated cisternae of the rough ER, in accordance with previous studies showing that rotavirus particles mature and accumulate in dilated ER cisternae (1). Clustered small, smooth vesicles enclosing one to three mature virion particles were observed in the apical area (Fig. 7C). These virion-containing vesicles were also observed under the terminal web (Fig. 7D). In agreement with immunostaining data, virion particles were never observed within the Golgi apparatus (Fig. 7A). Extracellular progeny viruses, which had probably been recently released from the cells, were free (Fig. 7D) and scattered between microvilli of the brush border. Together, these ultrastructural observations suggest that new RRV virions are transported from the ER to the apical plasma membrane by a vesicular transport process.

DISCUSSION

The availability of epithelial cells in culture has provided a powerful tool for investigators interested in interactions of viruses with epithelial surfaces (for a review, see reference 60). In this study, the transport and release of rotavirus were investigated by using the epithelial intestinal cell line Caco-2, which closely mimics enterocytes, thus allowing in vitro studies on the interaction of rotavirus with a cellular model that resembles their in vivo natural target. The results demonstrate that newly synthesized RRV particles are released almost exclusively from the apical domain of Caco-2 cells, before any cell lysis or disruption of monolayers. In addition, RRV particles are transported from the ER to the apical plasma membrane by an atypical vesicular transport process that bypasses the Golgi apparatus and lysosomes.

Nonenveloped viruses, such as rotaviruses, have been generally considered to be released by lysis of the infected cells (60). Our data clearly demonstrate that transmembrane leakage and cell viability are altered only after 24 h p.i., when total progeny viruses have already been released. Release without
FIG. 7. Electron microscopy analysis of infected Caco-2 cells. At 24 h p.i., cells were fixed and embedded as described in Materials and Methods. Thin sections were cut orthogonally to the filter, and after staining to improve contrast, samples were visualized by electron microscopy. (A) Infected Caco-2 cell exhibiting a typical enterocyte-like appearance with an apical brush border, microvilli, and typical tight junctions and desmosomes (arrows). N, nucleus; V, viroplasm. (B) Higher magnification of a perinuclear region showing RRV particles accumulated within dilated rough ER cisternae. Arrows point to virus particles budding from viroplasm into the rough ER. (C) Part of the apical region of the cell showing RRV virions enclosed within smooth membrane vesicles. (D) Similar vesicles containing virus just under the terminal web. Extracellular virus is free and scattered between microvilli. Bars, 1 μm (A) and 200 nm (B, C, and D).
enveloped viruses have also been observed to follow an atypical transport process. The Moloney murine leukemia virus Gag precursor (48) and the herpes simplex virus type 1 structural protein VP22 (11) are targeted to the cell surface via a nonclassical Golgi-independent mechanism. These observations and ours emphasize the interest in using viruses to explore new intracellular trafficking pathways.

RRV-containing vesicles presumably require targeting information to travel to the apical surface. Two kinds of mechanisms may be involved, which concern the sequence of viral proteins and/or the interaction of virions, or virion-containing vesicles, with the cellular targeting machinery. The presence of an apical targeting sequence has been extensively studied in the case of viral envelope proteins. An apical sorting signal in the ectodomain of the influenza virus hemagglutinin has been demonstrated (25, 41, 42), and more recently, Kundu et al. have identified a transmembrane domain sequence responsible for the apical transport of the influenza virus neuraminidase (24). Whether rotaviruses, although nonenveloped, use this strategy may be investigated by studying the transport pathway of rotavirus proteins expressed in Caco-2 cells by transfection, as has already been done for several enveloped-virus proteins in MDCK cells (18, 41, 42). The other, nonexclusive, possibility is that RRV utilizes an endogenous cellular targeting machinery. It is now established that apical targeting in Caco-2 cells is at least partially dependent on detergent-insoluble microdomains, which are highly enriched in glycosphingolipids (GSL) (16, 29). Interestingly, there is considerable evidence showing that to enter the cells, rotavirus does not utilize a cellular protein receptor but binds to GSL structures such as asialogangliosides present at the cell surface (38, 50). More recently, a study using the human enterocyte-like HT-29 cell line indicated that glycolipids containing specific carbohydrate moieties, such as sialic acid and galactose, contribute to the SA-11 rotavirus receptor structure (49). Preliminary studies from our laboratory have shown that after Caco-2 cell infection, RRV proteins are detected in the Triton X-100-insoluble fraction (unpublished data), suggesting that rotavirus-containing vesicles interact with GSL microdomains. Experiments using monensin provide strong support for this hypothesis. Indeed, although rotavirus does not transit through the Golgi apparatus, we have shown that monensin treatment, which is known to inhibit exit from the Golgi, leads to a nonvectorial release of virions. It is well known that GSL are synthesized and sorted in the Golgi. They are incorporated in vesicles that will reach primarily the apical surface with their cargo (29, 45). Upon monensin treatment, the exit from the Golgi of GSL should be perturbed, thus interfering with the production of vesicles destined for the apical side. Since our preliminary studies suggest that rotavirus-containing vesicles interact with the GSL and in this way reach the apical surface, it can be supposed that upon monensin treatment the virus will be transported randomly with no more vectorial release. This working hypothesis will be further elucidated in our next studies.

Vectorial release of virus is of crucial importance for viral pathogenesis. Viruses that enter and are released from epithelial cells at the apical membrane would be restricted to the epithelial surface and produce a localized infection, while non-directional release from lysed cells or basolateral release may facilitate spreading of the infection to underlying tissue (56). The pathogenesis of rotavirus, with a rather limited tissue tropism, in most cases infecting only the villus epithelium of the small intestine, is in agreement with apical release. However, it has been well established that rotavirus is able to infect cultured cells derived from other tissues, such as kidney or liver (23, 44). Our results suggest that the efficient, highly specific
intestinal tropism of rotavirus is not related to an inability to infect other tissues but results from its vectorial apical release from intestinal cells.

ACKNOWLEDGMENTS

We thank J. Cohen (INRA, Jouy en Josas, France) for kindly providing antirotavirus serum and the RRV strain. We also thank C. Sapin for helpful discussions during the preparation of the manuscript and Tsumo Karjalainen for his help with the English. Most of the confocal experiments were performed with the kind cooperation of the Institut fédératif de Recherche INSERM “Cellules Epitheliales, CHU X. Bichat, Paris, France.

REFERENCES