Flock house virus (FHV) is the best-studied member of the Nodaviridae, a family of small, nonenveloped, icosahedral riboviruses with bipartite positive-sense RNA genomes (3, 15). FHV was originally isolated from the New Zealand grass grub, Costelytra zealandica (28), but the virus replicates well in wax moth (Galleria mellonella) larvae and in Drosophila melanogaster cells in culture (11). In addition, RNA replication can result from transfecting the viral RNA into cultured vertebrate cells (2), plant protoplasts (30), or yeast (23) or from introducing intact virions directly into plants (30). Nodamura virus (NOV), the prototype member of the group, is unique among orthornaviruses with bipartite positive-sense RNA genomes (3, 15), in that NOV can infect BHK cells (1, 21, 26). However, since the relative efficiencies of transfection of virions and RNA into BHK cells are unknown, the resulting levels of RNA replication cannot be directly compared. Similar experiments demonstrated that RNA replication resulted from transfecting intact NOV or FHV virions, although purified viral RNAs from either NOV or FHV replicate well if they are introduced into these cells by transfection (Fig. 1A, lanes 3 and 9, respectively). Our initial experiments indicated that both NOV and FHV were noninfectious for BHK cells (Fig. 1A, lanes 5 and 11, respectively). These results suggested that the block to infectivity was at the stage of attachment, entry, or disassembly of the virus particle. However, the block could be circumvented by Lipofectin-mediated transfection of intact NOV or FHV particles (Fig. 1A, lanes 1 and 7, respectively). Our initial experiments indicated that both NOV and FHV could launch RNA replication if they were delivered directly to the cytoplasm, bypassing receptor-mediated entry. Similar results have been obtained by using cationic lipids, including Lipofectin, to deliver retroviruses (8, 17) and hepatitis delta virus (5) to nonpermissive cells. Longer exposure of the autoradiograph indicated that NOV could infect BHK cells, albeit at a very low efficiency (Fig. 1B, lane 5), which is consistent with the conflicting reports on whether NOV can infect BHK cells (1, 21, 26). However, since the relative efficiencies of transfection of virions and RNA into BHK cells are unknown, the resulting levels of RNA replication cannot be directly compared. Similar experiments demonstrated that RNA replication resulted from transfecting intact NOV virions into cultured Drosophila cells which showed no susceptibility to infection with NOV itself (data not shown).

The initiation of RNA replication by transfected particles was resistant to treatment with micrococcal nuclease (Fig. 1A, lanes 2 and 8), whereas the initiation of replication of isolated viral RNA was sensitive (Fig. 1A, lanes 4 and 10). Although we do not know the state of the transfected virions at the time they entered the cells, a possible explanation of their infectivity was that Lipofectin itself released the viral RNA from the particles. However, direct experiments using reverse transcription and PCR (RT-PCR) to detect RNAs 1 and 2 showed that neither
viral RNA was rendered accessible to reverse transcriptase during preparation of the transfection complexes, indicating that the conditions of transfection per se were not sufficient to cause virion disassembly (data not shown).

Disassembly of FHV in a cell-free system. We next examined whether virion disassembly could occur in a cell-free system. FHV can initiate replication when introduced into both plant and animal cells, so we added purified particles of FHV or NOV to mRNA-dependent extracts of both wheat germ and rabbit reticulocytes. In both translation systems, virions directed the synthesis of proteins A and α, the expected translation products of viral RNAs 1 and 2, respectively (Fig. 2, lanes 1 and 7). No protein products were observed with extracts that had been incubated under identical reaction conditions but without either virus or viral RNA (Fig. 2, lanes 2 and 8). Similar results were obtained whether or not the virus preparations had been frozen at −70°C before being added to the cell-free translation systems (data not shown). The appearance of the radioactive products was dependent on the time of incubation of the cell-free systems (Fig. 3, lanes 1 to 6) and was prevented by inhibitors of protein synthesis (data not shown), confirming that the labeled proteins were the products of bona fide translation rather than some artificial process. These results reinforced the conclusions from the transfection experiments (Fig. 1) and suggested that both FHV and NOV can undergo disassembly as a result of direct interaction with the components of the cytoplasm.

When the kinetics of protein synthesis directed by FHV virions were compared with those of an equivalent amount of extracted FHV RNA (Fig. 3), several points of interest emerged. Intact virions directed less than 5% as much protein synthesis as the translation of their entire RNA content yielded (Fig. 3, compare lanes 1 to 6 with lanes 7 to 12). Indeed, it appeared from the RNA concentration dependence of translation that virus particles realized only 1 to 2% of the full translational potential of the RNA they contained (Fig. 2, compare lanes 1, 3, 4, and 5). We excluded the possibility that the limited translational capacity of intact virions was due to a virion-mediated inhibition of cell-free protein synthesis, since 20 μg of virus particles had no effect on the translation of 4 μg of viral RNA (data not shown). This marked difference in the overall levels of protein synthesis was also responsible for the different relative abundances of proteins A and α in the two situations. The ability of RNA 2 to outcompete RNA 1 for translation has been well documented (12) and accounts for the predominance of α over A synthesis at higher RNA concentrations (Fig. 2, lane 5, and Fig. 3, lane 12). At low levels of protein synthesis, however, A and α were synthesized in more similar relative abundances, whether translation was initiated by virions or by viral RNA (Fig. 2). Hence, the relatively greater amount of protein A among the translation products from intact virions is attributable to the low overall level of protein synthesis rather than the preferential release of RNA 1.

When the different amounts of protein synthesis in the two situations were taken into account by examining comparable autoradiographic exposures, the rates of translation initiated by virions and by viral RNA appeared to be similar, with no detectable delay in the onset of translation directed by intact virions. These results suggested that disassembly occurred within the first few minutes of incubation in the cell-free system reaction and was limited to a small subpopulation of the input virions. Two hypotheses were consistent with the available data: either there was a limiting component that facilitated disassembly or only a subpopulation of virus particles was able to release the viral RNAs. However, no relationship between virion concentration and the efficiency of cotranslational disassembly was found (data not shown), suggesting that the latter possibility was more likely. Plaque assay analysis (29) indicated that FHV infectivity decreased by about 50% after FHV virions had been incubated in either the wheat germ extract or rabbit reticulocyte lysate for 60 min (data not shown).

As an independent assay for virion disassembly, we used RT-PCR to look for accessible FHV RNAs 1 and 2 in the preparations of purified virus particles before and after incubation in the translation system. RT-PCR products corresponding to either FHV RNA 2 (1,400 bp) (Fig. 4, lanes 1 and 3) or FHV RNA 1 (950 bp) (lanes 7 and 9) were observed when either viral RNA (lanes 1 and 7) or intact virions (lanes 3 and 9) were incubated for 60 min in the translation system. No amplification products were observed with either virus particles alone (Fig. 4, lanes 5 and 11) or wheat germ extract alone.
FIG. 2. Cell-free protein synthesis directed by FHV or NOV. A standard reaction mixture (25 μl) of wheat germ contained 12.5 μl of extract (Promega), 80 mM potassium acetate, 0.8 mM methionine-free amino acid mixture (Promega), 20 U of RNasin (Promega), and 10 μCi of [35S]methionine (NEN Dupont) (lanes 1 to 5). A standard reaction mixture (25 μl) of rabbit reticulocyte contained 16.5 μl of Flexi-Lysate (Promega), 0.2 mM methionine-free amino acid mixture (Promega), 20 U of RNasin (Promega), 0.5 mM magnesium acetate, 80 mM potassium acetate, and 20 μCi of [35S]methionine (NEN Dupont) (lanes 7 to 10). Cell-free reactions were programmed with either 20 μg of purified virus particles (lanes 1 and 7), no template (lanes 2 and 8), 40 ng of genomic RNA (lanes 3 and 9), 80 ng of genomic RNA (lanes 4 and 10), or 4 μg of genomic RNA (lane 5). Reaction mixtures were incubated at 28°C for 1 h. Proteins were resolved by electrophoresis on an SDS–12% polyacrylamide gel and visualized by autoradiography. The migration positions of marker proteins of known sizes which were resolved in lane M are shown to the right.

(lanes 2 and 8) or in reactions in which virus particles were added to the wheat germ extract at 0°C and immediately diluted 20-fold into the RT reaction mixture (lanes 4 and 10). These results demonstrated that the RNA in purified FHV neither was accessible initially to reverse transcriptase nor became accessible during the 60-min RT reaction. In contrast, during the 60-min incubation under the conditions of cell-free translation, virion RNAs became accessible both to ribosomes (Fig. 2 and 3) and to reverse transcriptase (Fig. 4).

One model proposed for nodavirus disassembly is that virion destabilization is induced by interactions among the virus, its receptor, and the endosome membrane and that the viral RNAs might be released via cotranslational disassembly (6, 18). Our results indicate that the interaction of FHV and NOV with a cell surface receptor was not required for virion disassembly. This is not to suggest that the natural pathway of nodavirus entry does not involve cell surface receptors, although such receptors remain to be identified. Nor can we exclude the possibility that transfection delivered the virions to the endosome membrane in a manner similar to receptor-mediated virus entry and that this was sufficient to promote destabilization in the absence of a receptor. However, intact endosome membranes were presumably absent from the cell-free translation extracts, so it is unnecessary to invoke receptor- or membrane-mediated virion destabilization mechanisms. On the contrary, our experiments indicate that some cytoplasmic component(s) facilitated virion destabilization and resulted in release of viral RNA to ribosomes via cotranslational disassembly as suggested by Johnson (18). It is possible that ribosomes associate directly with nodavirus particles to promote uncoating, as occurs with some plant viruses, including tobacco mosaic virus (31, 37, 38) and cowpea chlorotic mottle virus (24). Among the animal viruses, however, cotranslational disassembly of virions is less well documented, although a similar mechanism has been proposed for nucleocapsids of Semliki Forest virus (33). After removal of the viral envelope during endocytic entry, Semliki Forest virus capsid proteins bind to 28S rRNA and thereby facilitate the release of the viral RNA genome (32, 34–36). Further studies will be necessary to examine whether nodaviruses have the same mechanism, to
determine the fate of the viral capsids after RNA release, and to investigate why only a small percentage of the virions are involved.

We thank members of the Ball and Gail W. Wertz Laboratories for valuable advice and discussions. This work was supported by NIH grant R37 AI 18270.

REFERENCES

