Baculovirus gp64 Gene Expression: Negative Regulation by a Minicistron

MIN-JU CHANG AND GARY W. BLISSARD*

Boyce Thompson Institute at Cornell University, Ithaca, New York 14853

Received 10 April 1997/Accepted 18 July 1997

Small upstream open reading frames (ORFs) or minicistrons located in the 5' leader of eukaryotic mRNAs have been shown to play a role in translational regulation of some eukaryotic genes, particularly mammalian proto-oncogenes. A survey of the baculovirus Autographa californica multicapsid nuclear polyhedrosis virus genome suggests that at least 10 transcripts from late genes contain potential minicistrons, and at least three of these minicistrons appear to be conserved in homologous genes of the related Orgyia pseudotsugata MNPV. The position of the minicistron from one of these genes, gp64, is also conserved in gp64 genes from several baculoviruses, suggesting a potential regulatory function. To identify the potential role of the gp64 minicistron in regulating translation from gp64 late mRNAs, we generated a series of recombinant viruses containing the gp64 promoter and minicistron in combination with a chloramphenicol acetyltransferase reporter gene (cat) inserted into the polyhedrin locus. We first fused a cat reporter in frame with the minicistron coding region to demonstrate that the minicistron initiator ATG was in a context suitable for translational initiation. In subsequent experiments, a cat reporter was fused to the downstream gp64 ORF, and various constructs containing point mutations that inactivated the minicistron were examined. Translational efficiency in the presence and absence of the minicistron was measured by quantitative analysis of gp64-cat mRNA and the Gp64-CAT protein. In the absence of a functional minicistron, translational efficiency from the downstream gp64-cat reporter ORF increased. Surprisingly, single-point mutations that inactivated the minicistron initiator ATG also resulted in utilization of an upstream in-frame ATG that is found within the minicistron coding region and that is in a poor translational initiation context. Double-point mutation constructs that inactivated both the minicistron initiator ATG and the upstream in-frame ATG also resulted in increased translational efficiency from the downstream gp64-cat ORF. Thus, the gp64 minicistron serves as a negative regulatory element that decreases translation of the gp64 ORF on late mRNAs.

Baculoviruses are large double-stranded DNA viruses with genomes of 80 to 180 kbp. Three of the most widely studied baculoviruses, Autographa californica multicapsid nuclear polyhedrosis virus (AcMNPV), Bombyx mori NPV (BmNPV), and Orgyia pseudotsugata MNPV (OpMNPV), have been completely sequenced and have genomes of approximately 134, 128, and 132 kbp, respectively (1, 4, 46). Baculoviruses in the NPV group replicate and are transcribed in the nuclei of infected cells. The infection cycle consists of early, late, and very late phases, and regulation of these phases appears to be determined primarily at the level of transcription (26). Early genes are transcribed by host RNA polymerase II prior to viral DNA replication (20, 24, 72). Late genes are transcribed by a virus-induced RNA polymerase activity that appears to be encoded mostly by viral genes (5, 20, 33, 45, 49, 67). The late RNA polymerase activity recognizes late and very late baculovirus promoters which consist of the almost invariant core TAAG sequence and a limited amount of flanking sequence (21, 51, 58, 60). Like host mRNAs, baculovirus transcripts are capped (68). However, viral RNA splicing appears to be extremely rare, since only a single spliced gene has been identified (14).

Early and late viral mRNAs are translated in the cytoplasm, and translation is thought to be mediated by host ribosomes and cofactors. Little is known regarding viral regulation or control of translation. However, several studies suggest that the regulation of translation plays an important role in viral infection, since an apparent translational inhibition has been associated with viral host range restriction (27, 35). Consensus translational initiation contexts derived from mammalian systems appear to be functional in recombinant baculoviruses; however, highly expressed baculovirus genes such as polyhedrin and p10 do not necessarily conform to optimal translational initiation sequences established in mammalian systems (60). In several instances, transcriptional mapping studies have identified sets of overlapping baculovirus mRNAs that are coterminal at either the 5' or the 3' end (7, 8, 19, 22, 23, 53, 66). These overlapping mRNAs may contain as many as five major open reading frames (ORFs) and thus are structurally multicistronic. Transient expression studies of multicistronic mRNAs from OpMNPV showed that these multicistronic mRNAs were translated primarily as monocistronic mRNAs (23). These data suggest that in baculovirus-infected cells, ribosomes enter and scan viral mRNAs from the capped 5' end, as observed from mRNAs in eukaryotic cells.

mRNAs transcribed from some baculovirus genes contain very small ORFs (minicistrons) within the upstream leader region. Potential minicistrons have been reported in the gp64 (8), pp31 (25), p143 (44), and gp37 (71) genes of the OpMNPV and AcMNPV baculoviruses. It is not known if these minicistrons are translated or whether the short peptides encoded by the minicistrons have a function. However, in each case the major downstream ORF is translated from the mRNA containing the minicistron. In mammalian systems, upstream AUG codons on mRNAs of proto-oncogenes are frequently observed (40), and some have been shown to encode minicis-
trons that play a role in the regulation of translation of the downstream ORF (3, 28, 47).

In the present study, we analyzed the AcMNPV genome and found that at least 10 gene loci contain potential upstream minicistrons. Of the gp64 loci examined from three distinct baculovirus (OpMNPV [8], AcMNPV [70], and Chlorisoeura fumiferana MNPV [29]), all appear to have minicistrons in a conserved regulatory context. The transcription of gp64 genes from OpMNPV and AcMNPV has been studied in some detail (8, 9, 21, 34, 37). In these viruses, early transcripts initiate within −43 and −38 nucleotides (nt), respectively, upstream of the gp64 ORF, and late transcripts initiate farther upstream. In gp64 genes from both viruses, a minicistron is found on late but not early transcripts. Although these minicistrons differ in size and coding sequence, their locations relative to early and late transcription start sites are conserved. Analyses of sequences from additional gp64 genes from BomNp (46), Anticarsia gemmatalis MNPV (53a), and Hochiplasia ou MNPV (2) indicate that the same late promoter-minicistron-early promoter structure is present in these viruses. Because this promoter-minicistron structure is conserved in several distinct baculoviruses, we examined the function of the gp64 minicistron in regulating the translational efficiency of the downstream ORF.

In addition to the AUG codon that initiates the five-amino-acid minicistron, a second upstream AUG codon is found within the 5′ leader of AcMNPV gp64 late transcripts. This second AUG is in frame with the downstream ORF but is in a poor translational initiation context as defined in mammalian cells. Because this second upstream in-frame AUG is in frame with the downstream ORF, it was originally identified as a potential start codon of the gp64 ORF (70). However, based on transcriptional mapping data (21, 34), homologies with OpMNPV gp64 (which contains no upstream in-frame AUG) (8), and the signal peptide predicted from N-terminal peptide analysis of the mature protein (64), it is clear that the third AUG serves as the authentic gp64 initiation codon.

In the present study, we examined the role of the upstream gp64 minicistron in translational efficiency of the AcMNPV gp64 ORF during the late phase of infection. To accomplish this, we constructed recombinant AcMNPVs that contained the AcMNPV gp64 promoter region and a gp64-cat reporter fusion in the polyhedrin locus. To examine the effects of the minicistron and upstream AUGs, these potential upstream initiation codons were removed by introducing nucleotide substitution mutations. The effects of the absence of the minicistron and second upstream AUG were monitored by both CAT assays and quantitative immunoprecipitation of the CAT reporter protein.

MATERIALS AND METHODS

Reporter gene construction. (i) Minicistron-cat fusion. A cat ORF was fused in frame with the gp64 minicistron, and the construct was inserted into a recombinant baculovirus. A truncated gp64 promoter sequence was PCR amplified from plasmid pBS-Ac Sal/Bgl, which contains the full-length AcMNPV gp64 gene. Two primers, AcP5′ (GB134 [5′-ACACGCCGATAAAACCCGGGTTAT CAAAT-3′]) and MiniBamAc (GB172 [5′-CGGGATCCATTGAGGATCTTA CAT-3′]), were used to create an Aval (Smal) site at the 5′ end and a BamHI site at the 3′ end of an amplified gp64 promoter which contained sequence from 147 bp upstream of the gp64 ORF through the fourth codon of the gp64 minicistron (−147 to −51 relative to the gp64 ORF). The resulting Aval-BamHI fragment containing the late promoter and truncated minicistron was subcloned into the pBglII plasmid vector, and the resulting plasmid, designated pAcMCt, was excised from plasmid pTATA CAT (37) and subcloned into the BamHI site of pAcMCΔ to create a minicistron-cat fusion construct, pAcMC-C. The resulting plasmid, containing the gp64 late promoter region and four codons of the gp64 minicistron fused in frame to a linker and the cat ORF. Because all manipulations of sequences were at the DNA level, we will refer to the initiator codon as ATG (rather than AUG). To prevent translation initiation from the endogenous cat translational start site ATG (at +48 relative to the minicistron ATG), the endogenous initiator ATG was eliminated by site-directed mutagenesis. Primer ATGcat-del (GB174 [5′-CCAGTGT ATTTTTTTCTAGATCATGGTTTCTAG-3′]) was used with a DpnI-based site-directed mutagenesis kit (Stratagene) to create a BglII site at the cat ATG sequence of pAcMC-C. The resulting plasmid was designated pAcMC CAT. The promoter-minicistron-cat fusion construct was subcloned from pAcMC CAT as a 1.114-bp Smal-XbaI fragment and was inserted between the EcoRV and XbaI sites of the pAD21 transfer vector (74). (ii) Inactivation of the gpt ORF. A DNA fragment containing 147 bp upstream of the AcMNPV gp64 ORF plus 21 bp of the gpt ORF was amplified by PCR and cloned. Two primers, AcP5′ (GB134) and AcP3′ (GB135 [5′-GGG ATTCATACGATAGCTTC-3′]) were used to introduce a Smal (AatII) site into the 5′ end and a BamHI site into the 3′ end of the amplified fragment. This region was subsequently cloned into the Aval-BamHI sites of pBS-BglIII plasmid, and the resulting plasmid was designated pAcMC-gpt. To examine the effect of eliminating the gpt ORF on translation from the downstream gp64 ORF, two sets of minicistron mutations were generated. Point mutations were introduced into the minicistron by the long-primer unique-site-elimination mutagenesis technique (59). Primer AcP-ARG (GB137 [5′-GGTCCGGATAT AAAGAACATCGTCAG-3′]) was used to change the initiator codon of the minicistron from ATG to either AAG or Arg. Primer AcP-BglII (GB191 [5′-CTAGCTATAGGGGATATT C3′]) was used to eliminate the EcoRI site and as the other member of the primer pair. Plasmid pAcMC-gpt was used as the template. The resulting plasmids containing the above point mutations were designated pAcMC-Aag and pAcMC-Arg, respectively. To remove the minicistron from within the minicistrons (or mutant minicistrons) of the above constructs (pAcMC-Aag, pAcMC-Arg, and pAcMC-gpt), primes ATGgpt (GB239 [5′-CTAGTACGATAGGAGTCAT-3′]), AcAg (GB243 [5′-CTAGTAACGATGAGGACCTTC-3′]), and ArgAg (GB246 [5′-CTAGTAGCACGATGAGGC-3′]) were used to change the internal minicistron ATG codon to gpt. The resulting plasmids were designated pAcMC-Aag-gpt, pAcMC-Arg-gpt, and pAcMC-gpt-gpt, respectively. A 1.039-bp BamHI fragment containing the cat reporter gene cassette was subcloned into the BamHI site of each promoter-minicistron construct (pAcMC-Aag-gpt, pAcMC-Arg-gpt, and pAcMC-gpt-gpt). The resulting promoter-reporter constructs contained a wild-type late gp64 promoter, a wild-type or mutant minicistron, and a downstream gpt reporter fusion. The cat reporter fused consisted of 217 (seven amino acids) of the wild-type gp64 ORF, 36 nt of linker sequence, and 660 nt of the cat ORF. The promoter-minicistron-reporter constructs were cloned into the pAD21 transfer vector, as described above, to produce the following six constructs: pAcMC-Aag-gpt CAT, pAcMC-Arg-gpt CAT, pAcMC-gpt-gpt CAT, pAcMC-Aag-gpt CAT, and pAcMC-Arg-gpt CAT. Each transfer vector construct was confirmed by nucleotide sequencing with primer Polh.2 (GB175 [5′-GTAATGAGACGCAAAAAAC-3′]), which binds upstream of the polyhedrin locus.

Recombinant virus production. BacPak 6 Viral DNA (Clontech Inc.) was purified by standard procedures (55) and was linearized by digestion with Bsa3I. Recombinant viruses were generated by cotransfecting linear BacPak 6 viral DNA and helper vector DNA into Spodoptera frugiperda Sf9 cells as previously described (36, 55). In all viral constructs, the polyhedrin promoter and ORF were removed and replaced by the gp64 reporter constructs (see Fig. 1d). The wild-type gp64 locus of each virus was unchanged. Recombinant stocks were purified by two rounds of mechanical plating to eliminate virus stocks were prepared at 4 days postinfection (p.i.) from Sf9 cells infected at a multiplicity of infection of 0.1. To confirm normal regulation of gene expression in each recombinant virus, the temporal cascade of protein synthesis was analyzed by pulse-labeling proteins in infected cells at various times p.i. as described previously (43).

Analysis of CAT activity. Preparation of cell extracts and two-phase fluor dissolution CAT assays were performed essentially as described previously (6, 52). In 24-well plates (15.5-mm-diameter wells), 3 × 10^5 Sf9 cells were plated in each well and infected with recombinant viruses at an MOI of 20. At 24 h.p.i., the cells were washed twice with phosphate-buffered saline (PBS) and resuspended in 100 μl of PBS plus 5 mM EDTA. The cells were lysed by three cycles of freezing and thawing at −70°C and thawing at 37°C for 1 min. After pelleting cell debris, cell lysates were stored at −20°C. For CAT assays, extracts were diluted 1:20 in PBS, and a volume of 120 μl of the diluted cell extract was used in a total CAT assay reaction volume of 250 μl containing 7 or 10 μCi of [14C]acetyl coenzyme A (1 Ci/mmol [New England Nuclear]) and 1 mM chloramphenicol (Sigma) as substrates. For each recombinant virus, five replicate wells of cells were infected and analyzed by CAT assays. All data analyzed from each sample fell within the linear range of the CAT assay. Extracts from uninfected Sf9 cells (mock) and wild-type AcMNPV were used to calculate plasmid background. CAT standards (Sigma) were included in each experiment as positive controls.

Quantitative immunoprecipitation of CAT protein. Sf9 cells were plated in 24-well plates and infected with recombinant viruses as described above for CAT assays. After labeling and quantitative immunoprecipitation, the CAT protein were performed as previously described (54), with modifications. Infected Sf9
TABLE 1. Minicistrons present in transcriptionally mapped late genes of AcMNPV

<table>
<thead>
<tr>
<th>ORF no.</th>
<th>Gene name</th>
<th>Leader length (nt)</th>
<th>MC position (bp)</th>
<th>MC initiator context</th>
<th>MC size (amino acids)</th>
<th>IC distance (nt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>orf 7</td>
<td>105</td>
<td>4,409 < 4,432</td>
<td>TCC</td>
<td>7</td>
<td>44</td>
</tr>
<tr>
<td>31</td>
<td>sod</td>
<td>216, 11</td>
<td>25,757 > 25,807</td>
<td>AAC</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>36</td>
<td>pp31/39k</td>
<td>158</td>
<td>30,172 > 30,186</td>
<td>CAT</td>
<td>4</td>
<td>102</td>
</tr>
<tr>
<td>64</td>
<td>gp37/34.8k</td>
<td>90, 14</td>
<td>52,213 < 52,267</td>
<td>GGT</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>85</td>
<td>vp53</td>
<td>382, 107, 59</td>
<td>76,763 > 76,783</td>
<td>CCT</td>
<td>6</td>
<td>185</td>
</tr>
<tr>
<td>95</td>
<td>helicase/p143</td>
<td>166, 73</td>
<td>84,410 < 84,427</td>
<td>CAT</td>
<td>5</td>
<td>50</td>
</tr>
<tr>
<td>104</td>
<td>vp80</td>
<td>36</td>
<td>89,537 > 89,554</td>
<td>AGA</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>105</td>
<td>he65</td>
<td>93</td>
<td>93,373 > 94,138</td>
<td>TAT</td>
<td>14</td>
<td>45</td>
</tr>
<tr>
<td>128</td>
<td>gph64/p67</td>
<td>139, 126</td>
<td>109,762 > 109,779</td>
<td>AAG</td>
<td>5</td>
<td>44</td>
</tr>
<tr>
<td>138</td>
<td>p74</td>
<td>90</td>
<td>121,119 < 121,142</td>
<td>TAA</td>
<td>7</td>
<td>46</td>
</tr>
</tbody>
</table>

- The designated numbers of the major ORFs, gene names, and locations and orientations of the minicistrons in the AcMNPV genome (MC position) follow the previously established nomenclature (4). The lengths of 5' leader sequences are listed (leader length), and the immediate context of the ATG codon that initiates the minicistron (MC initiator context) and the length of each minicistron in codons (MC size) are indicated. Intracistronic distance (IC distance) indicates the distance between the termination codon of the minicistron and the ATG initiator of the major downstream ORFs listed on the left.
- Leader-containing minicistron.
- "The minicistron identified from the vp39 gene is found on a very long transcript that represents only a small fraction of the vp39 mRNAs expressed in the late phase (66)."

RESULTS

To determine the frequency of potential minicistrons in the AcMNPV genome, we analyzed the published AcMNPV genome sequence (4) to identify possible minicistrons upstream of each of the 154 potential major ORFs. The criteria used for this search were the following. (i) Searches were limited to 200 bp upstream of each major ORF or to the length of the longest transcript for transcriptionally mapped genes. (ii) All ATGs present within the designated upstream region were examined. (iii) Small ORFs with a coding capacity of 2 to 30 amino acids were selected for analysis. We identified 104 genes that may contain minicistrons. Since only approximately 36 genes in the AcMNPV genome have been transcriptionally mapped, we do not know if all minicistrons identified using these criteria are present in baculovirus genomes. To extend our analysis, we searched for potential late promoters upstream of the 104 genes containing potential minicistrons. The core late promoter sequence 5'-G/T/A TAAG-3' was used as an indicator of potential late promoters. From the 104 genes selected above, we identified 27 genes that contain minicistrons within potential late transcripts. Of these, 10 genes (orf7, sod, pp31/39k, gp37, vp39, helicase, vp80, he65, gph64/gp67, and p74) have been mapped transcriptionally and are thus confirmed as containing minicistrons on late transcripts. The relative positions, sizes, and translational contexts of these minicistrons are indicated in Table 1. Interestingly, only the minicistron from the helicase gene contains an optimal translational start site context, as defined for mammalian cells (42). This relatively high frequency of minicistrons in AcMNPV late transcripts (10 minicistrons identified in the 5' leaders of approximately 36 mapped transcripts) suggests that minicistrons may serve as a...
The conservation of the gp64 minicistron in several baculoviruses suggests an important role for this structure. To understand the role of the minicistron and to measure its effect on translation of the downstream gp64 ORF, we generated a reporter construct in which a cat ORF was fused in frame to the downstream gp64 ORF. We then inactivated translation of the up-
and cat minicistron- cat Sf9 cells were infected with recombinant viruses vAcMCCAT (which contains sequence from the minicistron, linker, and cat in the AcNPV polyhedrin locus. The structure of the vAcMCCAT construct is shown, with sequence from the minicistron, linker, and cat ORF given below. Virus vAcMCCAT contains the gp64 late promoter and a portion of the minicistron fused to a cat cassette. Linker sequences connecting the gp64 minicistron and cat ORF are shown in the gray box, and restriction sites are underlined. The nucleotide changes used to inactivate the bacterial cat ORF ATG are indicated by italics. (b) CAT activity from cells infected with vAcMCCAT and vAcMCATG. Previous studies have shown that (i) Cumulative CAT assay. Previous studies have shown that the gp64 gene is expressed under the control of both early and late promoters. The minicistron is found only on late mRNAs (21, 34). Figure 3 shows the result of CAT assays from cells infected with the recombinant viruses that carry a wild-type minicistron construct containing minicistron inactivation mutations. Sf9 cells were infected with wild-type or recombinant viruses at an MOI of 20, and cell extracts were generated at 24 h p.i. Average relative CAT activities from five replicates of each infection were determined by two-phase fluorescence diffusion assay and are presented as counts per minute (left). The CAT activities from cells infected with minicistron mutation viruses (vAcMCAaG and vAcMCAgG) were compared with those from cells infected with the wild-type minicistron virus (vAcMCATG). The fold increases above the wild-type virus construct are indicated beside each bar, and the scale is shown on the right. (ii) CAT assays were performed on SDS-PAGE gels to determine the relative levels of CAT expression. The sizes of markers are indicated in kilodaltons on the left, wt, wild type.

stream minicistron and examined qualitative and quantitative effects on translation of the downstream ORF (Fig. 1c). To inactivate the minicistron, the minicistron translational start site ATG was substituted with either AaG or AgG in the reporter constructs. Several recombinant viruses were initially generated, and these included vAcMCATG, which contained a wild-type minicistron and initiator ATG codon; vAcMCAltG, which contained an AaG substitution at the minicistron initiator position; and vAcMCAltG, which contained an AgG substitution at the minicistron initiator position (Fig. 1c). These mutations inactivate the minicistron initiator codon while preserving the structure surrounding the adjacent TATA box, which is located immediately upstream of the minicistron ATG initiator (Fig. 1a). In these constructs, a CAT cassette was fused to the seventh codon of the gp64 ORF. Thus, initiation downstream of the minicistron will occur at the authentic gp64 ATG initiator. Because GP64 coding sequences included in these constructs did not include the intact signal peptide, this GP64-CAT fusion was not secreted (data not shown). These reporter constructs were analyzed by CAT assays and by quantitative immunoprecipitation of the GP64-CAT fusion protein, as described above.

FIG. 2. CAT expression from a recombinant AcMNPV containing a minicistron-cat fusion. (a) Structure and sequence of the minicistron-cat fusion inserted in the AcMNPV polyhedrin locus. The structure of the vAcMCCAT construct is shown, with sequence from the minicistron, linker, and cat ORF given below. Virus vAcMCCAT contains the gp64 late promoter and a portion of the minicistron fused to a cat cassette. Linker sequences connecting the gp64 minicistron and cat ORF are shown in the gray box, and restriction sites are underlined. The nucleotide changes used to inactivate the bacterial cat ORF ATG are indicated by italics. (b) CAT activity from cells infected with vAcMCCAT and vAcMCATG. Previous studies have shown that the gp64 gene is expressed under the control of both early and late promoters. The minicistron is found only on late mRNAs (21, 34). Although CAT activity detected from the recombinant virus-infected cells at 24 h p.i. represents CAT expressed during both early and late phases, late mRNAs predominate at that time. Only CAT translated from late mRNAs (containing the minicistron) should be affected by the presence or absence of the minicistron. To aid in the interpretation of CAT assay data, we first performed an enzyme-linked immunosorbent assay (ELISA) to measure relative levels of GP64 from extracts of AcMNPV-infected cells at various times p.i. In that experiment (data not shown), we determined that ≥78% of the GP64 protein detected at 24 h p.i. appears to be expressed during the late phase and is, therefore, subject to possible translational regulation by the minicistron. This is consistent with the observation that by 24 h p.i., late mRNAs constitute the majority of gp64 mRNAs (21, 34). Figure 3 shows the result of CAT assays from cells infected with the recombinant viruses that carry a wild-type minicistron con-
FIG. 4. Analysis of minicistron inactivation mutations by quantitative immunoprecipitation. Sf9 cells were infected with recombinant viruses at an MOI of 20. At 24 h p.i., cells were lysed, total RNA was isolated, and the CAT fusion proteins were immunoprecipitated with an anti-CAT antiserum. (a) Titrations of total RNA and CAT fusion protein for quantitative analysis. The left panel shows a quantitative analysis of late cat RNAs from a primer extension experiment in which 4 pmol of labeled PrCAT1 primer (complementary to the cat ORF) was used in primer extension reactions with increasing quantities (1 to 7 μg) of total RNA isolated from cells infected with virus vAcMCATG. A dashed line shows the quantity of RNA (3 μg) selected for use in subsequent quantitative primer extension experiments. The right panel shows a quantitative analysis of CAT proteins immunoprecipitated from increasing quantities (0 to 200 μl) of extracts from vAcMCATG-infected cells that were pulse-labeled with [35S]Met/Cys for 30 min at 24 h p.i. Anti-CAT antiserum (2 μl) was used to immunoprecipitate the CAT protein. A dashed line indicates the quantity of extract (50 μl) selected for use in subsequent quantitative immunoprecipitation experiments. (b) Quantitative primer extension analysis of gp64-cat RNA and immunoprecipitation of GP64-CAT protein. Immunoprecipitation of GP64-CAT protein (upper panel) and primer extension of corresponding gp64-cat RNAs (lower panel) were performed with extracts from cells infected with recombinant viruses vAcMCATG, vAcMCAAG, and vAcMCAGG. PhosphorImager scans of three replicates of each quantitative immunoprecipitation and each quantitative primer extension reaction are shown. A labeled DNA fragment was added to each primer extension reaction prior to electrophoresis as an internal control (loading control). The positions of immunoprecipitated GP64-CAT proteins and primer extension products are indicated on the right. Labeled proteins and RNAs were quantified by PhosphorImager analysis. (c) Relative CAT protein-to-RNA ratios (indicated on the left axis) were calculated from data derived from an analysis of the gels shown in panel b. Fold increases relative to data from the vAcMCATG construct are indicated on the right and above each bar.
To confirm the above result and to evaluate the effect of the minicistron on translation efficiency, we quantified and compared GP64-CAT precipitated from the minicistron inactivation constructs (Fig. 4b, top panel; vAcMC(AAG) and vAcMC(AAG), two major bands). Quantitative immunoprecipitation data from PhosphorImager scans of GP64-CAT bands (Fig. 4b, upper panel) were normalized to the corresponding steady-state level of gp64-cat RNA (Fig. 4b, lower panel), and the results are indicated in the graph in Fig. 4c. These data show that inactivation of the minicistron by point mutations in the minicistron initiator ATG resulted in increases of approximately 3.7- and 3.1-fold in translation from downstream sites. These experiments further indicate that the minicistron negatively regulates translation of the downstream ORF.

(iii) Analysis of multiple CAT proteins. Because two major GP64-CAT products were detected upon inactivation of the minicistron in the above experiments, we measured the sizes of the two CAT proteins and compared these sizes with those predicted from potential ATG initiation sites. While the lower band corresponds to the CAT fusion initiated at the gp64 translation start codon, the upper band is approximately 2 kDa greater in size (Fig. 4b, upper panel, lanes 4 to 9). A diagram of the position of each ATG located downstream of the minicistron ATG is shown in Fig. 5a. A potential ATG initiator codon is located within the minicistron and is in frame with the downstream gp64 ORF (Fig. 5a [upstream in-frame GP64-CAT]). Translation from this upstream in-frame ATG would result in a protein containing an additional 18 amino acids at the N terminus, with a predicted increase in mass of approximately 2 kDa. To examine this further, we immunoprecipitated CAT proteins from cells infected with three recombinant viruses and compared the relative sizes of the CAT fusion proteins (Fig. 5b). A control (unfused) wild-type CAT protein was

FIG. 5. Qualitative analysis of CAT proteins detected from a recombinant virus containing a single mutation that inactivates the minicistron ATG. (a) The structures of the recombinant viruses containing either wild-type (wt) (vAcMC(TTG)) or mutant (vAcMC(AAG) and vAcMC(AAG)) minicistron ATG initiators are indicated, with CAT protein translation products diagrammed below (A, B, and C). (b) Immunoprecipitated CAT proteins from several recombinant virus constructs were compared on SDS-12% PAGE gels. Infected cells were pulse-labeled for 30 min at 24 h p.i., and CAT proteins were immunoprecipitated with an anti-CAT antiserum as described in Materials and Methods. The size of the wild-type CAT protein (wt CAT) expressed from a control virus [vAcP(21/20)] is compared to those of CAT proteins immunoprecipitated from recombinant viruses containing either a wild-type minicistron (vAcMC(TTG)), a single mutation that inactivates the minicistron ATG (vAcMC(AAG)), or a double mutation that inactivates the minicistron and the upstream in-frame ATG (vAcMC(AAG)(TTG)). The predicted products translated from the gp64 ATG (GP64-CAT) and the upstream in-frame ATG (upstream in-frame GP64-CAT) are indicated on the right of the gel and correspond to products A and B shown in panel a.
When the CAT protein was immunoprecipitated from cells upstream in-frame ATG, within the minicistron (Fig. 5a [A]), corresponded to that predicted from a protein initiated at the approximately 2 kDa larger than GP64-CAT that initiated at lane 3). The lower CAT band corresponded to the size of the bands were also detected (Fig. 5b, lane 4, and Fig. 4b, lanes 1 to 3). The lower CAT band corresponded to the size of the unfused wild-type CAT protein, while the upper band was approximately 2 kDa larger than GP64-CAT that initiated at the gp64 ATG (Fig. 5b, lane 4). The size of the upper band corresponded to that predicted from a protein initiated at the upstream in-frame ATG, within the minicistron (Fig. 5a [A]). When the CAT protein was immunoprecipitated from cells infected with vAcMC\(^{AG-TG}\) (a viral construct containing an inactivated minicistron ATG [Fig. 5a]), we found that (i) two bands of approximately equal intensity were observed and (ii) the sizes of these bands were consistent with proteins translated from the upstream in-frame ATG and the gp64 initiator ATG (Fig. 5a and b, lane 5). These data suggest that in the absence of a functional minicistron translational initiator (ATG), the ATG located within the minicistron ORF is used as a translational start site. Interestingly, this upstream in-frame ATG is not in a favorable context for translational initiation, as determined by Kozak for mammalian cells (42).

Indeed, the approximately equal quantity of the smaller GP64-CAT protein (initiated downstream at the wild-type gp64 ATG start site [Fig. 5b, lane 5]) indicates that translational initiation at the upstream site is leaky and suggests that the context at the upstream in-frame ATG site is not optimal for efficient translational initiation.

Inactivation of the minicistron and upstream in-frame initiator ATG codons. The above observations indicate that inactivation of the minicistron resulted in the utilization of an upstream in-frame ATG initiator codon that is not frequently utilized in the wild-type mRNA. To more accurately determine the quantitative effect of the minicistron on translation efficiency of the wild-type gp64 ATG initiator, we inactivated both the minicistron ATG initiator codon and the upstream in-frame ATG codon found within the minicistron. In addition, inactivation of the upstream in-frame ATG codon would also confirm the origin of the larger GP64-CAT protein (Fig. 5b, lane 5). We predicted that in the absence of both the minicistron ATG (Fig. 5a [first ATG]) and the upstream in-frame ATG (Fig. 5a [A]), ribosomes would initiate translation at the (downstream) wild-type gp64 ATG. We generated two additional virus constructs containing the same gp64 promoter and upstream leader region, but with substitution mutations that inactivated both the minicistron ATG and the upstream in-frame ATG. The two additional recombinant virus constructs (Fig. 6a [vAcMC\(^{AaG-TG}\) and vAcMC\(^{AgG-TG}\]) were generated by an A-to-G point mutation in the upstream in-frame ATG codon of each of the transfer vectors used to generate vAcMC\(^{AG-TG}\) and vAcMC\(^{AgG-TG}\).

(i) Origin of the larger CAT fusion protein. To confirm the origin of the larger GP64-CAT protein (Fig. 5b, lane 5), we compared the sizes of CAT proteins immunoprecipitated from cells infected with vAcMC\(^{AaG-TG}\) (which contains an inactivated minicistron initiator ATG) and vAcMC\(^{AgG-TG}\) (virus that contains an inactivated minicistron initiator ATG and an inactivated upstream in-frame ATG) and other recombinant viruses shown in Fig. 5b (lanes 6 versus 5). As predicted, the elimination of the upstream in-frame ATG resulted in the elimination of the larger GP64-CAT fusion band (Fig. 5b, lane 6), confirming the origin of the larger fusion protein. These results indicate that the context of the upstream in-frame ATG, although not favorable according to Kozak’s rules (40), is capable of supporting a reasonably high level of translation initiation in the late phase of the baculovirus infection. However, translation from this site appears to be leaky, since a substantial quantity of translation from the downstream site was also observed (Fig. 5b, lane 5 [upper versus lower bands]).

(ii) Cumulative CAT assay. To first examine the effects of the inactivation of both minicistron ATGs, we examined CAT activity from infected cell extracts at 24 h p.i. (Fig. 6b). We also included constructs that contained only inactivation of the minicistron initiator ATG. Each recombinant virus containing an inactivated minicistron showed increased CAT activity compared to that of the recombinant virus that contained a wild-type minicistron (Fig. 6b, vAcMC\(^{AaG}\)). Of the minicistron inactivation constructs, one virus, vAcMC\(^{AaG-TG}\), showed an increase in CAT activity of almost 3-fold, while the other viruses showed average increases of from 1.67- to 1.78-fold. This experiment demonstrated that like the single minicistron initiator mutations (vAcMC\(^{AaG}\) and vAcMC\(^{AgG}\)), the two double ATG inactivation constructs (vAcMC\(^{AaG-TG}\) and vAcMC\(^{AgG-TG}\)) also resulted in increased CAT activity.

(iii) Quantitative effect of double mutations in the gp64 minicistron. Viruses containing double mutations in the minicistron (eliminating both initiator ATG and upstream in-frame ATG) were used for quantitative analysis of translational effi-
ciency. SF9 cells were infected with viruses vAcMC\(^{ATG}\), vAcMC\(^{AaG}\), vAcMC\(^{AgG}\), vAcMC\(^{AaG-gTG}\), and vAcMC\(^{AgG-gTG}\) and pulse-labeled, and CAT proteins were immunoprecipitated (Fig. 7a, top panel). All quantitative CAT protein data were normalized to the internal GP64 protein control (Fig. 7a, middle panel). Bands representing translational initiation at the upstream in-frame ATG, the gp64 ATG, and the CAT ATG (Fig. 5a [A, B, and C]) were quantified by PhosphorImager analysis and combined for initial calculations of translational efficiency. Corresponding quantitative primer extension analysis of the gp64-cat RNAs from each recombinant virus were also conducted as described above (Fig. 7a, bottom panel). A CAT protein-to-mRNA ratio was calculated for each recombinant virus as a measure of translation efficiency from the reporter mRNA. Comparisons of downstream translational efficiencies in the presence or absence of the gp64 minicistron were shown in Fig. 7b. Inactivation of the minicistron by single-nucleotide substitutions (ATG to AaG or AgG) in the initiator codon resulted in the utilization of an upstream in-frame ATG (found within the minicistron, as described above) combined with an increase in downstream translational efficiency of approximately 3.5- to 4-fold (Fig. 7b [vAcMC\(^{AaG}\) and vAcMC\(^{AgG}\)]). Inactivation of both the minicistron initiator ATG and the upstream in-frame ATG resulted in an approximately 1.9- to 2.3-fold increase in downstream translational initiation efficiency (Fig. 7b [vAcMC\(^{AaG-gTG}\) and vAcMC\(^{AgG-gTG}\)]). In the latter case, initiation was detected primarily at the wild-type gp64 ATG (Fig. 7a, top panel, lanes 10 to 15).

According to the scanning model (42), ribosomes scan mRNAs 5' to 3' and initiate translation from the first suitable ATG encountered. In some cases, initiation at the first suitable ATG is not 100% efficient; some ribosomes may bypass the first ATG and initiate downstream. In such cases, initiation at the upstream ATG is referred to as leaky. Because successive ATG codons were present within the leader and downstream ATG initiators as trap initiator codons to measure leaky initiation from the upstream ATGs (Fig. 5a). The CAT initiator ATG (Fig. 5a [C]) is in a good Kozak context and serves as a trap to detect leaky translation initiation from the upstream gp64 ATG initiator codon (Fig. 5a [B]). Similarly, the gp64 ATG initiator codon can also be used as a trap initiator to measure leaky initiation from the upstream in-frame ATG (Fig. 5a [A]). Using data from quantitative immunoprecipitations (Fig. 7a) to compare the relative amounts of protein initiated at each of these sites, we calculated the relative efficiency of utilization of each ATG for each of the virus construct strategies used in this study (Fig. 8). The results from this analysis illustrate several major conclusions.

(i) Utilization of the minicistron ATG down-regulates overall translation of gp64 and reduces or inhibits initiation from the upstream in-frame ATG. Comparison of the utilization of the upstream in-frame ATG in the wild-type construct to translation from the same site in the minicistron inactivation mutant viruses showed an approximately 8.8-fold increase in translation from the upstream in-frame site when the minicistron was inactivated (Fig. 8a, column II, UIF). Translation from the gp64 ATG initiator also increased by 2.9-fold when the minicistron was inactivated.

(ii) Translation initiation at the minicistron ATG initiator codon was relatively efficient. Utilization of the upstream in-frame ATG initiation site was relatively low (18.8%) in the presence of the minicistron (vAcMC\(^{ATG}\) [Fig. 8a]) and increased dramatically (8.8-fold) when the minicistron ATG was inactivated (vAcMC\(^{ATG}\) [Fig. 8b]). This suggests that in the wild-type construct, the majority of the scanning ribosomes initiate at the minicistron ATG and then translate the minicistron and reinitiate downstream. Data from direct minicistron-CAT fusion experiments (Fig. 2) also support this conclusion. Initiation at the gp64 initiator ATG is also relatively efficient. When both minicistron and upstream in-frame ATGs were eliminated (Fig. 8c), approximately 86.4% of the protein detected resulted from initiation at the gp64 initiator ATG and only 13.6% initiated at the downstream trap ATG. In contrast,
initiation from the upstream in-frame ATG was very inefficient. When the minicistron ATG was eliminated (Fig. 8b), only approximately 44.3% of the protein detected resulted from initiation at the upstream in-frame ATG, while approximately 55.7% (46.1% plus 9.6%) initiated from downstream trap ATGs.

(iii) The relative efficiencies of translational initiation observed in this study appear to correspond generally to predictions from studies of mammalian translation initiation contexts. Of the three ATG initiation sites examined in this study, the context of the \textit{gp64} initiator ATG (AAGATGG) corresponded most closely to the general Kozak consensus (PuNNATGPu), and the initiation efficiency measured at that site was approximately 86.4% in the double mutation constructs. In contrast, the context of the upstream in-frame ATG (TCAATGG) did not conform to the general Kozak consensus and initiation at that site was only 44.3% efficient (Fig. 8b, column I). Although this level of initiation efficiency was poor in comparison to that from the \textit{gp64} initiator ATG, it was unexpectedly high considering the poor context. This suggests that the stringency for translational initiation in the late phase of \textit{AcMNPV} infections may be significantly different from that measured in mammalian cells.

DISCUSSION

In contrast to prokaryotic RNAs, most eukaryotic mRNAs follow a scanning model for translation initiation (42, 48). In the scanning model, the protein complex known as eIF-4F binds to the m7G cap structure of mRNA and mediates the assembly of a preinitiation complex that includes the 48S ribosomal subunit, tRNA$^{M^e}_e$, eIF2-GTP, eIF3, and eIF1A. This complex then migrates in the 5′-to-3′ direction. When the first ATG codon in a favorable context is encountered, 60S ribosomes join the complex and translation begins. In the scanning model derived from mammalian cell systems, the optimal sequences surrounding the initiation codon are PuNNATGPu (42), and the most important positions are -3 and +4 relative to the
ATG at +1 to +3. Experimental studies in mammalian systems show that nonoptimal nucleotides in these sites usually result in failure to initiate translation (39). All evidence to date indicates that translation in baculovirus-infected insect cells supports the scanning model, since known polycistronic mRNAs do not appear to efficiently translate the downstream ORFs (23). A computer analysis of the translational initiation context of a small subset of AcMNPV genes suggested that the optimal context surrounding the translation initiation ATG (AAnATGaaAA) may be similar to that of vertebrate systems in which −3 and +4 positions are purine nucleotides but may include additional conserved nucleotides at positions −2 and +8 (57). However, our functional analysis of several ATG initiators that do not conform to that consensus suggest that such a consensus may not be meaningful in the absence of functional data. In the present study, we observed translational initiation from ATGs found in a poor Kozak consensus context, although that translation was leaky and led to a relatively low level of initiation at downstream ATG initiators. The upstream in-frame ATG within the gp64 minicistron is found in the context 5′-TCAATGC-3′ (purine in neither the −3 nor the +4 position) yet is capable of initiating a substantial amount of translation (Fig. 7a, lanes 4 to 9, top band; Fig. 8b, AMC). Thus, it is unclear whether a different consensus is operable in vertebrate or baculovirus-infected cells or whether translation initiation stringency is lower or decreased during infection. We are currently examining this question. In other virus systems, leaky scanning has been shown to result in translation of more than one protein from a single ORF (12, 13, 18, 62, 63, 73). Since baculoviruses are capable of leaky scanning, it is possible that this mechanism is also used to expand the number of proteins encoded in the baculovirus genome or to regulate the levels of expression of some genes.

A small percentage of eukaryotic mRNAs contain minicistrons upstream of the major ORF. Many of these mRNAs are known proto-oncogenes which encode proteins, such as growth factors and their receptors (40). Similar mRNA structures have also been identified in eukaryotic viruses such as retroviruses (17), herpesviruses (61), hepadnaviruses (18), and reoviruses (65). The functions of most identified cellular minicistrons have not been determined; however, in some cases, translation of the upstream minicistron appears to modulate translation from the downstream ORF by down-regulating the downstream translational initiation. Experimental studies of vertebrate mRNAs containing upstream minicistrons have shown that both the minicistron and the major downstream ORFs can be translated (41, 56). The prevailing model (41) proposes that this is accomplished by translation of the upstream minicistron, followed by translational termination and partial dissociation of ribosomes and then continued ribosomal scanning and reinitiation at the downstream ORF. These studies show that a spacing of approximately 50 to 150 nt between the two ORFs is necessary for reinitiation (41, 56). Although the mechanism of reinitiation is not known, it was suggested that the 40S subunit (and certain initiation cofactors) may not dissociate from mRNA immediately after translational termination, thus permitting continued scanning and reinitiation when both the minicistron and the intracistronic distance are of an appropriate size. Thus, after translating a relatively short minicistron, scanning may continue for some distance before the ribosome dissociates completely from the mRNA. A minimum spacing of 50 to 80 nt may enable the 40S subunit to acquire tRNA Met after translating the upstream minicistron, whereas a spacing of more than 150 nt may allow the 40S subunit to dissociate from the mRNA (41). Longer or shorter spacing between cistrons usually inhibits reinitiation and translation of the downstream ORF. In the AcMNPV gp64 gene, the minicistron is located 44 nt upstream of the gp64 ORF. Thus, if translation of the AcMNPV gp64 gene conforms to the minicistron model proposed for mammalian mRNAs (41), the intracistronic distance is relatively short and this should negatively affect reinitiation. Because we did not alter intracistronic spacing in this study, it is not yet possible to determine whether such spacing plays a role in the demonstrated lower initiation efficiency at the downstream gp64 initiator ATG when the minicistron is present. It is also possible that optimal intracistronic spacing may differ in invertebrate cells or in baculovirus-infected insect cells. The spacing required for ribosomal subunits to become competent for reinitiation may also vary, depending on the secondary structure of a specific mRNA. In the gp64 gene from the related virus, OpMNVP, the intracistronic spacing is slightly longer than that in AcMNPV (67 versus 44 nt, respectively).

Some of the most intensively studied minicistrons are those from the yeast GCN4 gene, Rous sarcoma virus (RSV), and human cytomegalovirus (CMV). In each case, several minicistrons are found in the 5′ leader region of important mRNAs. The yeast gene GCN4 contains four upstream minicistrons, and the first and the fourth minicistrons regulate the translation of GCN4 based on the availability of nutrients (31). In viral systems, minicistrons may have a number of different functions. In RSV, three small minicistrons are located upstream of the gag gene (17). Two of the three minicistrons appear to serve a role as enhancers of translational initiation from the gag gene, since their inactivation results in decreased gag production and decreased RNA packaging. Thus, these retrovirus minicistrons may play a role in the regulation of virion production. In the human CMV, several genes contain minicistrons in their 5′ leader regions. Three minicistrons are found in the leader of the gp48 gene. The second minicistron is conserved among CMV strains and was shown to play a negative regulatory role in translation of the gp48 (10, 11, 61).

A number of RNAs encoded by AcMNPV genes contain minicistrons (Table 1), suggesting that minicistrons play a role in the translational regulation of these genes. Because the gp64 promoter-minicistron structure is conserved among all baculoviruses that have been examined, we hypothesized that the minicistron would play a role in translational regulation from gp64 late mRNAs. In the current study, we used a recombinant virus containing a minicistron-CAT fusion to demonstrate that the minicistron from the AcMNPV gp64 gene is in a context suitable for efficient translation and that the minicistron is likely translated during the late phase. By inserting discrete substitution mutations that inactivated the minicistron initiator ATG and generating the appropriate recombinant viruses, we showed that minicistron inactivation resulted in increased translational efficiency from downstream ATGs. Thus, the data presented here indicate that the AcMNPV gp64 minicistron negatively regulates translation of the gp64 ORF. This negative effect may result from either a delay in translation caused by the requirement for initiation and translation of the minicistron or by inefficient reinitiation at the downstream ORF. Such inefficient reinitiation could result from a suboptimal intracistronic spacing between the minicistron and gp64 ORF. However, analysis of the percentage of ATG utilization at the wild-type gp64 ATG and the downstream CAT trap ATG (the wild-type CAT initiator ATG) suggests that the efficiency of initiation at the gp64 ATG is not substantially different in the presence or absence of the minicistron (71.7 versus 86.4% [Fig. 8a versus c]). If intracistronic spacing plays a substantial role in translational reinitiation efficiency, we might expect to see a much higher level of utilization of the downstream CAT trap

Downloaded from http://jvi.asm.org on November 7, 2017 by guest
ATG when the minicistron was present, since the spacing between the minicistron and the trap ATG is greater (80 nt). Although utilization of the CAT trap ATG is higher in the wild-type construct, the difference is not large. Thus, while we cannot discount this difference, it appears that the overall negative effect of the minicistron on downstream translational initiation may result from a delay in the travel of the ribosome, since it initiates and translates the minicistron. It is also possible that the peptide encoded by the minicistron plays a role in this negative effect. Indeed, in the human CMV virus, it is possible that the peptide encoded by the minicistron plays a role in translation initiation, and the overall sequence prior to release.

The observation that the gp64 minicistron negatively regulates translation from the downstream gp64 ORF during the late phase is surprising. It is not clear why gp64 translation should be negatively regulated during the late phase, when budded virions are produced. A possible explanation is that overproduction or inappropriate temporal production of GP64 may interfere either with virion budding or with the production of the occluded form of the virus during the very late phase of the infection cycle. Alternatively, this translational regulation may modulate entry of gp64 into the secretory pathway. The conservation of the minicistron structure on late gp64 mRNAs of different baculoviruses suggests that the presence of this regulatory element provides a selective advantage.

ACKNOWLEDGMENTS

We thank David Garrity and Casey Finnerty for comments on the manuscript and George Rohrmann for providing the OpMNPV genomic sequence prior to release. This research was supported by grants from NIH (AI31130) and USDA (9601885).

REFERENCES

