Herpes Simplex Virus Type 1 Recombination: the U_c-DR1 Region Is Required for High-Level a-Sequence-Mediated Recombination

REBECCA ELLIS DUTCH, BORIS V. ZEMELMAN, AND I. R. LEHMAN*

Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305

Received 21 December 1993/Accepted 2 March 1994

The a sequences of herpes simplex virus type 1 are believed to be the cis sites for inversion events that generate four isomeric forms of the viral genome. Using an assay that measures deletion of a β-galactosidase gene positioned between two directly repeated sequences in plasmids transiently maintained in Vero cells, we had found that the a sequence is more recombinogenic than another sequence of similar size. To investigate the basis for the enhanced recombination mediated by the a sequence, we examined plasmids containing direct repeats of approximately 350 bp from a variety of sources and with a wide range of G+C content. We observed that all of these plasmids show similar recombination frequencies (3 to 4%) in herpes simplex virus type 1-infected cells. However, recombination between directly repeated a sequences occurs at twice this frequency (6 to 10%). In addition, we find that insertion of a cleavage site for an a-sequence-specific endonuclease into the repeated sequences does not appreciably increase the frequency of recombination, indicating that the presence of endonuclease cleavage sites within the a sequence does not account for its recombinogenicity. Finally, by replacing segments of the a sequence with DNA fragments of similar length, we have determined that only the 95-bp U_c-DR1 segment is indispensable for high-level a-sequence-mediated recombination.

Herpes simplex virus type 1 (HSV-1) is an enveloped virus with a 152-kb linear duplex DNA genome. There are two unique regions in the HSV-1 genome, termed U_L (unique long) and U_S (unique short). These are flanked by repeated regions, such that the final structure can be represented as a_bU_L-U_SB_a (41). Recombination occurs through the inverted repeats during HSV-1 infection, giving rise to four equimolar isomeric forms that differ in the orientation of their unique regions (18, 23, 45). There is considerable evidence that this inversion process occurs through the HSV-1 a sequences. Insertion of fragments containing an a sequence into the viral thymidine kinase gene produces new inversions in regions flanked by the inverted a repeats (32, 50) and deletions of regions with directly repeated a sequences at their ends (32, 50). In addition, the few nonreverting mutants of HSV-1 that have been identified contain large deletions encompassing the a sequences at the U_L-U_S junction (25, 37).

The HSV-1 a sequence varies from 200 to 500 bp in length and is approximately 83% G+C. The a sequence is essential for cleavage and packaging of HSV-1 (35, 56) and also includes the promoter for the ICP34.5 gene (10). The a sequence contains 20-bp direct repeats (DR1) at each end and two unique segments (U_L and U_S) separated by arrays of direct repeats. The composition of the internal directly repeated elements of the a sequence varies from strain to strain (15, 31, 33, 55, 56), but all contain an array of 12-bp DR2 repeats. The DR2 repeats have several features that could potentially play a role in a-sequence-mediated recombination. They have been shown to adopt a novel DNA conformation under the influence of negative supercoiling (62, 63), and they are sites for cleavage by a HSV-1-induced endonuclease (61).

High-level recombination between either a sequences or other pairs of homologous sequences requires both HSV-1 infection and replication of the DNA containing the repeated sequences. Recombination between inverted repeats of the a sequence that had been stably integrated into the cellular genome along with a flanking HSV-1 origin of replication was shown to occur only in conjunction with HSV-1-dependent amplification (34). Similarly, recombination between Tn5 repeats within plasmids was observed only in association with HSV-1 DNA replication (58). Our previous studies of recombination between a sequences in plasmids transiently introduced into Vero cells confirmed that high levels of recombination were seen only when the plasmids underwent replication in HSV-1-infected cells (20). Analysis of the time course of HSV-1 recombination and replication indicated that the two processes parallel each other, and direct quantitation of the products of recombination by Southern analysis demonstrated that recombination occurred during or subsequent to the last round of DNA replication (20).

The exact nature of the high-level a-sequence-mediated recombination remains unclear. HSV-1-infected cells show high levels of homologous recombination, and repeated regions such as the HSV-1 Bam L sequence (38), the HSV-1 b sequences (30), or the Tn5 repeats (58) can mediate inversion events. The a sequence does, however, appear to be more highly recombinogenic than other sequences: Weber and co-workers demonstrated that the 3.0-kb b-a-c junction was more recombinogenic than a 3.0-kb plasmid sequence (59), and our previous work showed that recombination between a sequences was twice as efficient as recombination between a different set of direct repeats of the same size (20). Recombination between a sequences could be enhanced either because it is a hot spot for homologous recombination or because it is acted on by a site-specific recombinase. The finding that the a sequences of HSV-1 and HSV-2, which have little homology, are incapable of recombining with each other argues against a site-specific mechanism (51). However, the simple conditions of an in vitro system for a-sequence recombination (7) are indicative of a site-specific mechanism.

In this report, we describe our continued studies of recom-
bination with plasmids transiently introduced into Vero cells. We find that direct repeats from a variety of sources and with a wide range of G+C content give essentially identical recombination frequencies. However, directly repeated a sequences show recombination frequencies that are twice that seen with the other sequences. Introduction of a cleavage site for the a-sequence endonuclease identified by Wohlrab and coworkers (61) does not increase the frequency of recombination, indicating that the presence of cleavage sites for this enzyme cannot account for the recombinogenic nature of the a sequence. Finally, replacement of portions of the a sequence with DNA segments of similar length showed that the U6-cm1 region contains the cis signals required for high-level a-sequence-mediated recombination.

MATERIALS AND METHODS

Cells and viruses. All tissue culture experiments were carried out with Vero cells (African green monkey kidney fibroblasts) obtained from the American Type Culture Collection. Cells were propagated in Dulbecco modified Eagle minimum essential medium supplemented with 10% fetal calf serum, 0.1 mM nonessential amino acids, and 2 mM glutamine. The HSV-1 strain F(Δ305) (39) was used.

Plasmid construction. All restriction enzymes and linkers used in plasmid construction were obtained from New England Biolabs or the United States Biochemical Corp. Plasmids were prepared either by alkaline lysis followed by subsequent CsCl gradient purification (43) or by the alkaline lysis procedure followed by purification on Qiagen columns according to the manufacturer’s instructions. The two methods gave essentially the same results in transfection experiments. All DNA samples for an individual transfection experiment were prepared by the same method.

Plasmid pRD107 (20) was used as the parent vector for all constructions. This plasmid contains the ampicillin resistance gene and the origin of replication of pUC19, permitting its propagation in *Escherichia coli*. It also contains the complete lacZ gene with ribosomal binding sites that allow transcripts made by runoff transcription to be translated. Upon transformation with pRD107, *E. coli DH5α (RecA lacZ+*) gives deep blue colonies when plated in the presence of ampicillin and 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal). In addition, pRD107 contains an HSV-1 origin of replication, Ori\(\alpha\), which allows the plasmid to replicate in HSV-1-infected cells.

Plasmids containing direct repeats of homologous sequences were prepared by inserting a copy of the desired insert into both the XbaI and BamHI sites of pRD107, so that the inserts were positioned in directly repeated orientation. In all cases, the inserts were prepared for insertion by preliminary restriction digestion, addition of either XbaI or BamHI linkers, digestion with *XbaI* or *BamHI*, purification on agarose-TAE gel (40 mM Tris-acetate, 1 mM EDTA) gels, and elution from the agarose gel with an Elutrap electrophoresis chamber (Schleicher & Schuell). For pRDMS2, the insert was a 374-bp *PstI*-to-*SacI* fragment from the mouse Na\(^+/K^+\) ATPase gene, kindly provided by S. Ying Tam, Harvard Medical School. For pRDB2, the insert was a 378-bp *SplI*-to-*EagI* fragment from pBR322 (nucleotides 562 to 939). This fragment contained no part of the parent vector, pRD107. pRDBx2 contained 400-bp inserts generated by *SpeI*-to-*DraI* digestion of dX174 (nucleotides 1007 to 1406; New England Biolabs). The 390-bp fragment in pRDU32 was from the yeast *URA3* gene, generated by a *StuI*-to-*SalI* digest of RP17 (nucleotides 3556 to 3945). pRDVS52 contained a 370-bp insert from a *HincII* digest of simian virus 40 (nucleotides 2297 to 2666). For pRDUBx2, a 380-bp fragment from an *ApaI*-*PstI* digest of (pUT)\(d(Hind)\) 33/toCAT (27) was used. This insert contains multiple copies of the Ubx DNA binding site from *Drosophila melanogaster*. Finally, pRD110, as described previously (20), contains an insert from the d-signalizing gene (dsg) of *Myxococcus xanthus*, provided by Yvonne Cheng and Dale Kaiser, Stanford University. pRD105, also described previously (20), contains two copies of the a sequence from HSV-1 strain KOS, provided by James Smiley, McMaster University.

To construct plasmid substrates containing cleavage sites for the a-sequence-specific endonuclease reported by Wohlrab et al. (61), (dG)\(25\) and (dC)\(25\) oligonucleotides flanked by XhoI sites were obtained from the PAN facility, Beckman Center, Stanford University School of Medicine. The oligonucleotides were annealed by mixing equal volumes, heating to 85°C, and then cooling to room temperature. The annealed oligonucleotides were then digested overnight with XhoI and purified on a 4% NuSieve low-melting-point agarose gel (FMC BioProducts). The vectors pRDMS1 (pRD107 containing only one mouse Na\(^+/K^+\) ATPase insert) and pRD111 (pRD107 with one dsg insert) were prepared for insertion by cleavage with XhoI, which cuts once in the mouse and dsg inserts and for which there are no sites in the parent vector pRD107. Insertion of the (dG)\(25\)·(dC)\(25\) oligonucleotide into the prepared vectors resulted in plasmids msendo1 and dsendo1. A second copy of the mouse and dsg inserts now containing the endonuclease recognition site was then added to the BamHI site of the vectors such that the repeats were completely homologous and in the directly repeated orientation, creating plasmids msendo2 and dsendo2. Finally, plasmid dsghendo2 was constructed by inserting a copy of the mouse Na\(^+/K^+\) ATPase with inserted (dG)\(25\)·(dC)\(25\) into the BamHI site of dsendo1. Thus, this plasmid has two nonhomologous inserts, both containing the endonuclease site.

Plasmids for analysis of the recombinogenic properties of various regions of the a sequence were constructed by removing portions of the a sequence and replacing them with segments of the dsg sequence. The wild-type a sequence from HSV-1 strain KOS is 317 bp in length and contains both direct-repeat and unique regions such that its final structure is DRI-U6c(R2)10-U6-d (56).

Plasmid pRDUs\(_2\) was constructed in the following manner. The 317-bp a sequence was removed from pRD105 by *BamHI* digestion, isolated on a 1% agarose–TAE gel, and purified by Elutrap. This fragment was then digested with the restriction enzyme *EaeI*, and the resulting 222-bp DNA fragment, with the sequence *Eael*-(DR2-U6c-DR1)-BamHI, was gel purified and isolated by Elutrap. The required dsg fragment was generated by digestion of pRD111 with *CspI*, addition of *Eael* linkers (*Eael* and *Eael* produce compatible cohesive ends), and digestion with *BamHI* and *Eael*. The resulting 120-bp fragment was purified by using a 1% agarose–TAE gel and Elutrap. This *BamHI*-dsg-*Eael* fragment was cloned into the Bluescript cloning vector (Stratagene) cut with *BamHI* and *Eael* to obtain sufficient quantities of DNA and again excised and purified prior to use. The a sequence and dsg fragments were joined by simultaneous insertion into the Bluescript vector previously digested with *BamHI*, giving a 342-bp insert of structure *BamHI*-(dsg-DR2-U6c-DR1)-BamHI. This insert was placed into the *XbaI* site of pRD107 (XbaI linkers added prior to insertion) to give pRDUs\(_2\) and then into the *BamHI* site of pRDUs\(_1\) to yield pRDUs\(_2\).

To construct plasmid pRDR2\(_2\), two a-sequence fragments were needed. The first, containing the DRI-U6c portion, was generated by cleaving the purified 317-bp a sequence with *Eael* and purifying the resulting 95-bp fragment through 1% agarose.
rose–TAE and Elutrap, giving a fragment of structure BamHI-
(DR1-U$_5$)-EaeI. The DNA fragment containing the U$_5$-DR1
was generated by digestion of pRD105 with DraI and SfiI, gel
and Elutrap purification of the resulting 270-bp fragment, and
digestion with MnlI for 6 h to remove the DR2 region. The
resulting fragment was then filled in with the Klenow fragment
of DNA polymerase I. XhoI linkers were added, and product
was digested with BamHI and XhoI. The final 100-bp fragment,
with the structure XhoI-(U$_5$)-BamHI-BamHI, was gel and Elu-
trap purified. Finally, the desired dsf fragment was constructed
by cleavage of pRD109 with BamHI and SfiI, addition of EaeI
linkers, digestion with XhoI and EaeI, gel and Elutrap purifica-
tion. This 126-bp fragment, XhoI-(dsf)-EaeI, was cloned into
Bluescript previously digested with XhoI and EaeI in order
to obtain sufficient quantities of the DNA. Once the three
required fragments were obtained, the BamHI-(DR1-
U$_5$)-EaeI and EaeI-(dsf)-XhoI pieces were ligated by simulta-
neous insertion into Bluescript previously digested with
BamHI and XhoI. This plasmid was grown in large quantities,
and the 221-bp insert was cut out with BamHI and XhoI and
purified. Next, this BamHI-(DR1-U$_5$)-dsf-XhoI fragment and
the XhoI-(U$_5$)-BamHI DNA were joined by double insertion
into Bluescript previously digested with BamHI. This procedure
generated the final 321-bp insert, BamHI-(DR1-U$_5$-
dsf-U$_5$)-BamHI, which was subsequently cloned into the
XhoI site of pRD107 (using XhoI linkers on the insert) to give
pRD107-1 and transformed into the BamHI site of pDRD2-1 in
direct orientation to give pRD2-2.

Three fragments were also required to generate pRDU$_3$-2. The first, the 95-bp BamHI-(DR1-
U$_5$)-EaeI fragment, was the same as described for pRD2-2. The segment containing the DR2 region was isolated by cleavage of pRD105 with SfiI, purification of the 217-bp fragment generated, cleavage by DraI and EaeI, and isolation of the resulting 122-bp fragment [EaeI-(DR2)-SfiI]. These two segments were ligated by simulta-
neous cloning into Bluescript previously digested with
BamHI and SfiI to give BamHI-(DR1-U$_5$-DR2)-SfiI. Next, the
dsf fragment described for pRD2-2 was inserted by blunt-end ligation into the SfiI site of the Bluescript vector containing the required portions of the a sequence. Cleavage
of the resulting plasmid with BamHI and Rsal (which cleaves
near the end of the inserted dsf sequence) yielded a 337-bp
insert with structure BamHI-(DR1-U$_5$-DR2-dsf)-Rsal con-
taining 12 bp of Bluescript vector between the DR2 and dsf
sequences. This insert was cloned into the XhoI site of pRD107
(using XhoI linkers) to create pRDU$_3$-1 and into the BamHI
site of pRD107 by pRD2-1 in direct-repeat orientation to give
pRDU$_3$-2. The correct construction of the three replacement
constructs was confirmed by DNA sequencing.

Transfection, infection, and DNA isolation. Actively growing
Vero cells at a concentration of 5 \times 10^5 to 7 \times 10^5 cells per ml
were electrophorated (12) at 220 V with 20 \mu g of the indicated
plasmid. Cells were allowed to recover for approximately 24 h.
The transfected cells were then infected with 10 PFU/cell
HSV-1 (Δ305) in 3 ml of medium or mock infected with 3 ml
of medium. Virus and medium were removed after 1 h, the
cells were washed twice with phosphate-buffered saline (ob-
tained from Gibco), and the medium was replaced.

DNA was extracted from the transfected cells using the RAPP procedure as described previously (20).

Transformation, miniprep isolation of DNA, and restriction analysis. Competent frozen E. coli DH5α cells (0.2 ml) were
prepared and transformed with 20 to 100 ng of DNA by the
method of Hanahan (22) except that the growth medium
consisted of 5 g of Bacto Yeast Extract, 20 g of Bacto Tryptone,
and 5 g of MgSO$_4$ per liter. The cells were plated with 100 \mu g
of carbunculin and 50 \mu g of X-Gal per ml. Miniprep isolation
of DNA from white colonies was performed by the modified
boiling procedure (43), with 50 mM Tris-Cl (pH 8.0)–0.5 M
EDTA–0.4% Triton X-100–2.5 M LiCl used as the resuspension
buffer. The DNA was digested with DraI for 2 h and
electrophoresed through 1% agarose gels in TAE.

Cleavage of plasmid DNA in vitro. A 0.4 M NaCl extract
was prepared from nuclei of HSV-1-infected Vero cells, centri-
fuged at 100,000 \times g, and precipitated with ammonium sulfate
as previously described (7). The dissolved precipitate was then
dialyzed and applied to a column of heparin-agarose and
eluted with a 50 ml 0.1 to 1.0 M NaCl gradient. The 0.5 M NaCl
heparin-agarose fraction contains the a-sequence-specific
cleavage activity.

One microgram of plasmid DNA linearized with SfiI was
incubated with 500 ng of the heparin-agarose fraction for 10
min at 37°C in a buffer consisting of 25 mM N-2-hydroxyethy-
lpyperazine-N'-2-ethanesulfonic acid (HEPES; pH 7.6), 1 mM
dithiothreitol, 1 mM spermidine, 2 mM MgCl$_2$, 1 mM EDTA,
and 50 mM NaCl. EDTA (10 mM) was used to stop the reaction,
after which the DNA was purified by using the Magic
DNA Cleanup System (Promega, Inc.).

Two hundred nanograms of enzyme-treated DNA was
digested with SspI and Scal, precipitated, and resuspended in
80% formamide–1× Tris-borate-EDTA (TBE) loading buffer.
The samples were boiled, chilled on ice, and loaded onto an 8
M urea–1.2% TBE 5% Long Ranger gel (J. T. Baker, Inc.).
The gel was run with 0.6× TBE buffer at 27 W and 50 to 55°C.
Following electrophoresis, the gel was equilibrated for 20 min
in 1× NAC buffer (80 mM Tris-HCl, 118 mM borate, 2.4 mM
EDTA [pH 8.3]). The DNA was then transferred with 1×
NAQ buffer onto a 0.22-μm-pore-size Nitran membrane
(Schleicher & Schuell) at 2.5 mA/cm2 for 1 h, using a Graphite
Electroblotter II (Millipore, Inc.). Following transfer, the
membrane was rinsed with 5× SSC (1× SSC is 0.15 M NaCl
plus 0.015 M sodium citrate), and the DNA was immobilized
onto the damp membrane by cross-linking in a Stratalinker
oven (Stratagene, Inc.) with a UV dose of 120 mJ/cm2.

Bands were detected in the following manner. Oligonucleo-
otides CGCGATGCGCGAGCCACCCGTCC and CCAC
AGGACGGGTTGTTGTCGCCAGATCGCG were tagged at their
3′ ends with digoxigenin-11-dUTP/dATP by using terminal
transferase and used to probe the membrane according to
instructions provided with Genius 6 kit (Boehringer Mann-
heim, Inc.). The membrane was then processed with anti-
digoxigenin antibody coupled to alkaline phosphatase and
Lumigen PPD chemiluminescent substrate, using the Genius 7
kit and instructions suggested by the manufacturer (Boeh-
ringer Mannheim). Following a 2-h incubation at room temper-
ature in the dark, the membrane was exposed to Hyperfilm
ECL X-ray film (Amersham, Inc.) for 30 min. The film was
developed in an automated film developer (Eastman Kodak,
Inc.).

Assay for recombination frequency. The assay used to
measure recombination between sets of direct repeats has
been previously described (20). Briefly, plasmids containing
directly repeated sequences flanking a lacZ gene were elec-
rotated into Vero cells, and the cells were infected with HSV-1
or mock infected. Eighteen hours after infection, the DNA
was isolated by the RAPP procedure and then transformed into
E. coli DH5α. The number of blue and white colonies was scored
to determine the frequency of lacZ deletion. Since events other
than recombination between the direct repeats can lead to loss of
a functional lacZ gene, the DNA was isolated from a
fraction of the white colonies by the miniprep procedure and
examined by restriction analysis.
RESULTS

Recombination between a sequences occurs at twice the frequency of recombination between any other set of homologous sequences. We had previously shown that recombination between a sequences in replicating plasmids is twice as efficient as that seen between two directly repeated copies of dsg, a segment of DNA from M. xanthus of similar size but with no significant homology to the a sequence (20). To determine whether the high G+C content of the a sequence (83%) is responsible for the increased frequency of recombination, we constructed six plasmids with the repeats all 370 to 400 bp (compared with the 317-bp a sequence) but with G+C content varying from 22 to 73%.

In the absence of superinfection with HSV-1, all of the plasmids showed a low level of recombination (<1% white colonies), consistent with our previous finding (20), and there was no significant difference in the recombination frequencies of any of the plasmids (Table 1).

In the presence of HSV-1 infection, all plasmids showed a greatly increased frequency of recombination. As before, pRD1105, containing the a sequences, gave an average of 10.4% white colonies, and pRD110, the plasmid with directly repeats dsg sequences, showed a recombination frequency less than half that of the a-sequence-containing plasmid (4%). All other repeated sequences recombined with a frequency similar to that of the dsg sequence, regardless of the source of the DNA or their G+C content. Restriction digest analysis of plasmid DNA from the white colonies of each sample showed that 60 to 80% contained a plasmid that was consistent with a deletion through the directly repeated sequences. Thus, we can conclude that the frequency of homologous recombination between these direct repeats in plasmids replicating in HSV-1-infected cells is 3 to 4% and is unaffected by G+C content ranging from 22 to 73%. Recombination between a sequences is at least twice as efficient, confirming the special recombinogenic properties of the a sequence.

Addition of sites for an a-sequence-specific endonuclease does not significantly increase recombination between direct repeats. An endonuclease that cleaves within the a sequence has been identified and partially purified by Wohlrab and coworkers (61). It was suggested that this enzyme may play a role in a-sequence-mediated recombination by generating double-strand breaks that could be highly recombinogenic. To test this hypothesis, we constructed plasmids in which another substrate for the endonuclease, a duplex oligonucleotide, (dG)_{25}·(dC)_{25} (61), was inserted into both repeats of pRD110 and pRDMS2. To verify that these sequences were cleaved, a partially purified enzyme fraction from HSV-1-infected nuclei able to cleave the DR2 repeats within the a sequence (data not shown) and which is probably identical to the enzyme described by Wohlrab and coworkers (61) was incubated with the modified plasmid substrates. The DNA was then purified and analyzed by modified Southern analysis. In the absence of enzyme, little cleavage of the DNA occurred with any of the samples (Fig. 1, lanes 1, 3, 5, and 7). When enzyme was added, pRD110 and pRDMS2, which lack the endonuclease substrate insert, showed no significant cleavage (Fig. 1, lanes 2 and 6). However, the two plasmids with the (dG)_{25}·(dC)_{25} insert produced a 400-bp product for dsgendo2 and a 250-bp product for msendo2, as predicted for cleavage at the inserted endonuclease site (Fig. 1, lanes 4 and 8). The amount of cleavage at the (dG)_{25}·(dC)_{25} insertion was similar to that for the a sequence (data not shown).

When recombination between direct repeats containing the (dG)_{25}·(dC)_{25} was examined in uninfected cells, a low frequency of white colonies was observed (Table 2). Four samples gave significantly higher values than normally seen. However, these higher values are randomly dispersed, and restriction analysis of the DNA isolated from the white colonies showed very few correct products.

After HSV-1 infection, there was a large increase in recombination frequency (Table 2). pRD105, the a-sequence-containing plasmid, showed the highest percentage of white colonies (5.8%). pRD110, with the dsg repeats, again gave white colonies at approximately half the frequency seen with pRD105. dsgendo2, formed by addition of the endonuclease substrate site to the dsg sequences, gave recombination frequencies that were very similar to those for pRD110. The data obtained with plasmids pRDMS2 and msendo2 are somewhat more complex. pRDMS2 gave 3.0 to 4.4% white colonies in

TABLE 1. Comparison of recombination frequencies with plasmids containing direct repeats

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Source of DNA insert</th>
<th>% G+C</th>
<th>HSV-1 infection<sup>a</sup></th>
<th>% White colonies (SD)<sup>b</sup></th>
<th>Total no. of colonies</th>
<th>Avg % white colonies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Exp 1 (0.1)</td>
<td>Exp 2 (0.2)</td>
<td>Exp 3 (0.4)</td>
</tr>
<tr>
<td>pRD105</td>
<td>a sequence</td>
<td>83</td>
<td></td>
<td>0.2</td>
<td>0.5</td>
<td>0.4</td>
</tr>
<tr>
<td>pRDMS2</td>
<td>Mouse Na<code>K</code> ATPase</td>
<td>73</td>
<td></td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>pRD110</td>
<td>M. xanthus dsg</td>
<td>65</td>
<td></td>
<td>4.5</td>
<td>2.5</td>
<td>3.9</td>
</tr>
<tr>
<td>pRDBR2</td>
<td>pBR322</td>
<td>60</td>
<td></td>
<td>0.4</td>
<td>0.2</td>
<td>0.6</td>
</tr>
<tr>
<td>pRDhX2</td>
<td>φX174</td>
<td>45</td>
<td></td>
<td>3.4</td>
<td>5.7</td>
<td>3.3</td>
</tr>
<tr>
<td>pRDU32</td>
<td>Yeast URA43 gene</td>
<td>42</td>
<td></td>
<td>0.2</td>
<td>0.6</td>
<td>0.5</td>
</tr>
<tr>
<td>pRDSVS2</td>
<td>Simian virus 40</td>
<td>40</td>
<td></td>
<td>3.5</td>
<td>3.5</td>
<td>6.7</td>
</tr>
<tr>
<td>pRDUbx2</td>
<td>D. melanogaster Ubx</td>
<td>22</td>
<td></td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
</tr>
</tbody>
</table>

^a Transfected cells were either infected with HSV-1 (+) or mock infected (−).

^b Calculated as [(1-frequency) (frequency/number of colonies)]^2.
five of the six samples. The reason for the high value in experiment 4 is unclear. The endonuclease insert in msendo appeared to give significant stimulation in one case (experiment 3) but otherwise gave values very similar to those for pRDMS2. Restriction digest analysis showed no significant difference in the percentage of correct deletion products obtained between plasmids with the endonuclease cleavage site and those lacking this site. Finally, plasmid dsmsendo, which contains one ds-g-endonuclease cleavage site insert and one mouse-endonuclease cleavage site insert, gave a very low frequency of white colonies and no correct products in restriction digest analysis, demonstrating that two homologous sequences are required even in the presence of the cleavage sites. We therefore conclude that the presence of a cleavage site for the a-sequence-specific endonuclease is not sufficient to explain the consistently high levels of recombination observed between repeated a sequences.

The U1-DR1 region of the a sequence is responsible for the high level of recombination between a sequences. Our studies confirmed the highly recombinogenic nature of the a sequence but indicated that cleavage within the DR2 repeats by the a-sequence endonuclease was not sufficient. We therefore wished to determine which regions of the a sequence were necessary for the high recombinogenicity. Two groups had previously performed deletion analyses of the a sequence, with somewhat conflicting results (9, 49), possibly because of variations in the length of homologous sequences examined. There is significant evidence that in both prokaryotic and eukaryotic cells, homologous recombination is strongly dependent on the length of the homologous regions (3, 26, 29, 42, 46, 48, 53, 57, 64). Recombination between repeated sequences shorter than the minimal efficient processing segment (approximately 220 to 280 bp in mammalian cells) (29, 42) is very inefficient. Above this size, there is a linear dependence on length. Consequently, it is important that the constructs to be tested for their recombination frequency be of similar size. We therefore replaced portions of the a sequence with segments of the ds-g sequence such that the length of homology was kept between 317 bp (the size of the wild-type a sequence) and 342 bp. The three constructs (Fig. 2) contain inserts which replace the DR1-Ur regions (pRDUb2), the DR2 repeats (pDRR2 2), or the U1-DR1 regions (pRDUc2) of the a sequence.

In the presence of HSV-1 infection, the frequency of recombination with pRDUc2, which lacks the DR1-Ur region, was similar to that seen with pRD105, which contains the wild-type a sequence (Table 3). pDRR2 2, which lacks the DR2 repeats, gave an even higher level of recombination. Replacement of the U1-DR1 region, however, reduced recombination to half of that obtained with the wild-type a sequence. The reduced level of white colony formation seen with pRDUc2 was consistent through all of the experiments and was independent of the preparation of DNA (Table 3, experiment 5). Thus, when the total length of homology is kept constant, either the DR1-Ur region or the DR2 repeats can be replaced with no significant decrease in recombination frequency, indicating that they are not responsible for the increased frequency of recombination seen with the a sequence. Instead, the cis signal for high-level a-sequence recombination resides in the U1-DR1 segment. Replacement of this segment reduces the recombination fre-

![FIG. 1. Southern analysis of endonuclease cleavage of sites containing a (dC)32-(dC)35 insert. The experiment was performed as described in Materials and Methods. Lanes 1, 3, 5, and 7, untreated DNA; lanes 2, 4, 6, and 8, DNA treated with enzyme fraction. Lanes 1 and 2, pRD110; lanes 3 and 4, dsmsendo; lanes 5 and 6, pRDMS2; lanes 7 and 8, msendo.](image)
sequence to the level observed between any set of non-a-sequence direct repeats.

DISCUSSION

Our findings shed new light on several aspects of recombination in HSV-1-infected cells. First, the very similar recombination frequencies observed with direct repeats in which G+C content varied from 22 to 73% indicates that there is a significant level of homologous recombination in replicating plasmids that is independent of G+C content. Second, recombination between a sequences occurs at twice the level observed with these other sequences. Third, addition of a cleavage site for an a-sequence-specific endonuclease does not significantly increase the frequency of recombination, indicating that cleavage of the a sequence by this enzyme cannot account for the high recombinogenicity of the a sequence. Finally, the U2-DRI region is the only segment of the a sequence that is indispensable for the enhanced level of recombination.

Several groups have described the high frequency of homologous recombination that occurs in HSV-1-infected cells (5, 6, 8, 14, 24, 44, 52, 60). Weber and coworkers demonstrated that Tn5 undergoes significant homologous recombination when present in the HSV-1 genome or on a replicating plasmid in HSV-1-infected cells (58). Although recombination could be detected only down to 600 bp of homology, our more sensitive assay very likely explains our ability to detect recombination between 350- to 400-bp repeats.

As noted above, changes in G+C content do not affect the frequency of recombination. We were unable to test sequences with G+C content as high as that of the a sequence (83%) because of difficulties with plasmid construction. This left open the possibility that an extremely high G+C content is needed for high-level recombination. However, our subsequent finding that large portions of the a sequence can be replaced with sequences of lower G+C content without affecting recombination frequency indicates that the high G+C content of the a sequence is not the sole cause of its recombinogenicity.

The finding of an HSV-1-induced endonuclease that specifically cleaves within the a sequence (61) led to speculation that cleavage by this enzyme was responsible for the high level of recombination. There is considerable evidence that double-strand breaks in DNA can stimulate recombination (for reviews, see references 21 and 54). However, it is clear that cleavage by the a-sequence-specific endonuclease is not responsible for the recombinogenicity of the a sequence. Possibly recombination occurs with such high frequency in HSV-1-infected cells that double-strand breaks do not significantly influence the total signal. It is also possible that cleavage by the a-sequence-specific endonuclease, while readily seen in vitro, did not occur within the infected Vero cells. However, our finding that the DR2 region of the a sequence is not required for high-level recombination reinforces our conclusion that cleavage within the DR2 repeats by the a-sequence endonuclease is not the cause of the high level of a-sequence-mediated recombination.

Replacement of portions of the a sequence was used to determine whether any regions within the a sequence were dispensable. Simple deletions decrease the amount of homology, and as stated earlier, there is considerable evidence that the frequency of homologous recombination is directly related.
to the length of the repeated regions (3, 26, 29, 42, 46, 48, 53, 57, 64). Moreover, the 317-bp length of the a sequence from strain KOS is quite close in size to the minimal efficient processing segment size of 250 to 280 bp seen in mammalian cells (29, 42). Since recombination frequencies between segments smaller than the minimal efficient processing segment show an exponential decrease, any significant shortening of the a-sequence repeats might be expected to greatly affect that portion of the signal generated by homologous recombination.

Our replacement analysis indicates that both the DR1-DR2 and DR2 regions of the a sequence are dispensable for high-level recombination. In fact, pRDR2-2, which lacks the array of DR2 repeats, gives the highest recombination frequency. It is possible that these repeats, which are known to adopt novel DNA structures (62, 63), actually repress a-sequence-mediated recombination. Further experiments will be needed to test this hypothesis.

Our most significant finding is that the Uc-DR1 region is the only segment of the a sequence that is dispensable for high-level recombination. Repeats lacking this region consistently recombine at half the frequency seen with the full a sequence. The fact that recombination is reduced to the level seen with any other set of homologous repeats indicates that removal of the Uc-DR1 region eliminates the special recombination activity associated with the a sequence. The construct pRDU-2 does contain a short section of Bluescript cloning vector next to the dsG region, but the lack of sequence effects on the level of homologous recombination makes it unlikely that it is of any significance.

The finding that the Uc-DR1 region is dispensable is at variance with one deletion analysis. Chou and Roizman (9), studying the a sequence from HSV-1 strain F, reported that deletion of the Uc or Uc domain did not affect inversion, while DR4 repeats were important and DR2 repeats were essential for recombination through a sequences. Several factors complicated their study. First, use of the 153-kb HSV-1 genome makes quantitation very complex. More importantly, the seven constructs examined varied considerably in size, from less than 100 bp to well over 500 bp. Thus, it is difficult to differentiate between changes in background levels of homologous recombination and decreases due to removal of important portions of the a sequence. It is interesting that insertion of a fragment containing only the Uc-DR1 segment gave little inversion in the Chou and Roizman study. It is possible that the difference in our finding results from the use of a sequences from different strains of HSV-1. Specifically, the strain KOS a sequence used in our study does not contain the DR4 repeats, but a portion of one DR4 repeat is present in our Uc region. Further experiments will be needed to determine whether it is this segment of the Uc that contains the cis signals for high-level recombination.

Smiley and coworkers also performed a deletion analysis of the a sequence and concluded that the sequences at the ends were most important for inversion (49). Though again complicated by the use of the whole viral genome and decreasing size of homology, their results are consistent with our findings. Deletions from the Uc end of the a sequence decreased recombination much faster than deletions from the Uc terminus, and a fragment of less than 100 bp that contained the Uc-DR1 (their Uc,5 construct) was capable of driving inversion. Both of these findings are consistent with our conclusion that the Uc-DR1 region contains the cis site for enhanced a sequence recombination.

The Uc region of the a sequence contains pac2, one of the two cis sequences essential for cleavage and packaging of HSV-1. However, it is unlikely that cleavage and packaging play a role in recombination. Cleavage and packaging should also require the pac1 sequence found in the Uc region (16, 56). Deiss and coworkers (16) found that plasmids with only Uc could be packaged, but examination of the final products revealed the presence of Uc regions that had been added by recombination with the helper virus. In our study, miniprep and restriction digest analysis of white colonies from pRDU-2 indicate that no additions occurred, demonstrating that enhanced recombination can be seen in the absence of the pac1 signal found in Uc. In addition, there is considerable evidence that cleavage and packaging are coupled processes. Disruption of packaging, caused by deletions in the packaging signals (17) or mutations in any of nine different HSV-1 genes (1, 2, 4, 19, 36, 40, 47), also prevents processing of high-molecular-weight viral DNA into unit-length monomers. Thus, it is likely that once the processing of DNA for packaging has begun, the DNA becomes unavailable for recombination. Finally, we have previously demonstrated that recombination parallels replication through the course of HSV-1 infection, with a significant signal seen by 6 h postinfection (20). Thus, both processes should be well under way before packaging has begun.

Several proteins that bind in the a sequence have been identified. Dalziel and Marsden (13) noted the binding of 21- and 22-kDa proteins to the a sequence. Kemble and Mocarski purified a host cell protein that binds to the highly conserved pac-2 element in the cytomegalovirus genome (28). Finally, Chou and Roizman demonstrated sequence-specific binding to the Uc-DR1 region of the a sequence by two larger proteins, which they speculate to be ICPI and ICPI (11). The relationship between these proteins and a-sequence recombination remains to be determined.

The important question of whether the a sequence is a hot spot for homologous recombination or a cis signal for a site-specific enzyme remains unresolved. However, we have now narrowed the region of importance to the 95-bp Uc-DR1 region. It should now be straightforward to examine further the DNA requirements of this system.

ACKNOWLEDGMENTS

We thank S. Y. Tam for the gift of the mouse Na"K ATPase gene we used in our construct pRDM52 and F. Bradley Johnson and Mark Krasnow for the gift of the p(UT)(Hind)D-33/t3CAT plasmid used in the construction of pRDU-2x.

R.E.D. is a predoctoral fellow of the National Science Foundation. This work was supported by grants AI 26538 and AG02908 from the National Institutes of Health.

REFERENCES

47. Sherman, G., and S. L. Bachenheimer. 1987. DNA processing in