Role of E2F Transcription Factor in E1A-Mediated \textit{trans} Activation of Cellular Genes

SCOTT W. HIEBERT,1 MICHAEL BLAKE,2 JANE AZIZKHAN,2 AND JOSEPH R. NEVINS*1

Section of Genetics, Department of Microbiology and Immunology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710,1 and Lineberger Comprehensive Cancer Center, CB 7295, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 275992

Received 8 November 1990/Accepted 28 March 1991

Adenovirus E1A-dependent \textit{trans} activation of the adenovirus E2 gene involves the activation of the cellular transcription factor E2F. E2F binding sites have also been identified in the 5'-flanking region of a number of cellular genes, raising the possibility that such genes are targets for E1A \textit{trans} activation. We now demonstrate that two genes that possess E2F recognition sites, \textit{N}-\textit{myc} and \textit{DHFR}, are stimulated by E1A, dependent on the E2F sites. We also find that although there are multiple E2F sites in these promoters, a single intact E2F binding site is sufficient for E1A-mediated induction, although not to the full wild-type level. These results thus demonstrate that a variety of cellular genes that possess E2F binding sites are subject to E1A \textit{trans} activation. Moreover, since the products of most of these genes are likely critical for cellular proliferation, there are obvious consequences of this \textit{trans} activation for cellular phenotype.

Viral systems have proved to be invaluable tools in the study of complex cellular events. The DNA viruses that infect the nuclei of eukaryotic cells make use of the host cell transcriptional machinery, and thus the lessons learned from the study of these viruses have been informative for general considerations of eukaryotic transcription control mechanisms (10, 18). For instance, it is clear that most of the viral transcription units employ promoters and enhancers that utilize cellular transcription factors in a manner similar to that of their cellular counterparts. An added advantage of the viral systems is the fact that many viruses encode regulatory proteins that control the activity of some of these cellular transcription factors. These so-called \textit{trans}-activating genes are responsible for the efficient stimulation of viral transcription during the lytic replication cycle. Perhaps the best studied of these viral regulatory genes is the E1A gene of adenovirus. The E1A gene products are not DNA binding proteins (5), and thus it is presumed that the action of E1A to stimulate transcription must be indirect. Indeed, several reports have shown that this E1A-dependent activation process involves the targeting of cellular transcription factors that bind to the promoter regions of the early viral genes (reviewed in reference 17). In some cases, the DNA binding activity of the factor is stimulated, whereas in other cases, no change in binding is seen, suggesting a change in function.

DNA binding assays identified a factor termed E2F that bound to functionally important sequences of the viral E2 promoter and which was increased in abundance upon viral infection (12). The time course of E2F induction during an adenovirus infection is coincident with the stimulation of E2 transcription, indicating a role for E2F in the regulation process (21). Recent experiments have now shown that the adenovirus-mediated stimulation of E2F DNA binding activity is a multistep process. First, there is an E1A-dependent increase in the level of DNA binding activity of the E2F factor, not involving new synthesis of protein and possibly as a result of an induced phosphorylation (2, 20). Second, the interaction of E2F with the E2 promoter is further augmented by the induction of cooperative binding to the two E2F binding sites in the E2 promoter as a result of the interaction of a 19-kDa E4 gene product with E2F (7, 9, 16, 20). This cooperative binding, which is dependent on the precise arrangement of E2F binding sites in the E2 promoter, leads to the formation of a very stable DNA-protein complex. Finally, recent experiments demonstrated that the E2F factor can be found complexed to cellular proteins in many cell types and that the E4 protein cannot interact with E2F in such complexes. However, E1A can dissociate these complexes, releasing free E2F to which the E4 protein can then bind (1).

Our previous experiments have identified E2F binding sites in the 5'-flanking region of a number of cellular genes including \textit{c}-\textit{myc}, \textit{N}-\textit{myc}, and the dihydrofolate reductase (DHFR) gene (3, 8, 15). Functional assays have demonstrated the importance of the E2F sites in the \textit{c}-\textit{myc} promoter for E1A-induced expression (8, 14, 25). We now show that E1A can \textit{trans} activate these other cellular genes, dependent on the E2F sites in these promoters, indicating that the presence of an E2F site can render a gene sensitive to activation by E1A. Furthermore, we demonstrate a high degree of conservation of a dyad E2F binding site within these promoters and suggest that this site represents the normal, cellular binding site for E2F.

MATERIALS AND METHODS

Cells and virus. Vero and LMTK− cells were obtained from American Type Tissue Culture. Cells were grown in Dulbecco modified Eagle medium supplemented with 10% fetal calf serum.

Plasmids and DNA fragments. Plasmid \textit{N}-\textit{myc/R1Bam/ gem1} containing the transcriptional start site and 1,619 nucleotides of the mouse \textit{N}-\textit{myc} promoter was obtained from Jeff Friedman (Rockefeller University). The chloramphenicol acetyltransferase (CAT) gene from plasmid pCAT\textsubscript{3M} was cloned directly downstream of the \textit{N}-\textit{myc} promoter at the \textit{HindIII} site. The full-length promoter was deleted to position \textasciitilde122 by digestion with \textit{NarI}, and double-stranded oligonucleotides containing wild-type E2F binding

* Corresponding author.
sites or mutant binding sites (TTTGGATCGAACCAGCTTT
GGACC) were ligated into the NarI site to reconstitute
nucleotides −123 to −142 (numbers are relative to the 5′
transcriptional start site [4]).

A XbaI-to-Smal restriction fragment of 131 nucleotides
was isolated and end labeled with [γ-32P]dATP with the
Klenow fragment of DNA polymerase for use in the gel
mobility shift analysis.

The DHFR-CAT wild-type and E2F double-mutant plas-
mids have been described previously (3). In this study,
additional site-directed mutants were constructed which
abolished either E2F site alone. The sequences of the
mutagenic oligonucleotides are shown below (with the
resulting sequence alteration underlined).

wild-type sequence: 5′-TGGATTTGCGCCAAAACCG-3′
3′-ACGTAAAAACAGCGTTGGAAAC-5′

site 1 oligonucleotide: 5′-TGGAAAAAAGCCCGAAACCTG-3′
3′-ACGTTTTTTGCGCGTTCGAAAC-5′

site 2 oligonucleotide: 5′-TGGATTTGGCCCGTTGGAAAC-3′
3′-ACGTAAAAACAGCGTTGGAAAC-5′

site 1 + 2 oligonucleo-
tide: 5′-TGGATTTGGCGACAAAAACCG-3′
3′-ACGTAAAAACAGCGTTGGAAAC-5′

Probes for gel shift analysis were created by subcloning
a FokI-to-PstI fragment from plasmid pDHFR-210CAT into
BlueScript containing the CAT gene and isolating a XbaI
fragment of 142 nucleotides. This fragment was end labeled with
[γ-32P]dATP by using the Klenow fragment of DNA
polymerase.

Transfection of DNA and CAT assays. Vero or LMTK cells
were split 1:4 in Dulbecco modified Eagle medium supple-
mented with 10% fetal calf serum 8 h prior to transfection.
Briefly, calcium phosphate precipitates (6) were formed
containing 20 µg of DNA (1 to 5 µg of target DNA and 5 to
15 µg of the E1A-expressing plasmid pGE1A; plasmid
pGEM2 was used as nonspecific carrier DNA). Cells were
exposed to the DNA precipitates for 12 to 16 h and then
washed with Dulbecco modified Eagle medium and placed in
Dulbecco modified Eagle medium containing 10% fetal calf
serum for 36 h before harvesting. CAT assays were per-
formed exactly as described previously (6). The plasmid
pBC12/RSV/SEAP (2 µg) was used as an internal control
in each transfection (3a).

Mobility shift assays and off-rate analysis. DNA binding
assays were performed as described by Hiebert et al. (8).
The reaction mixtures contained 1 to 4 µg of protein and 0.1
ng of a DNA fragment 33P end labeled with the Klenow
fragment of DNA polymerase. The reaction mixture was
incubated at room temperature for 30 min and analyzed on a
4% polyacrylamide gel containing 0.25× TBE at 4°C.
Off-rate analysis was performed as described by Ray-
chaudhuri et al. (20). A standard DNA binding reaction
mixture was prepared as above, and after a 30-min incuba-
tion at room temperature, a large excess (80 ng) of specific
competitor was added, aliquots were removed at the various
time points, and the DNA-protein complexes were analyzed
immediately on a 4% polyacrylamide gel.

RESULTS

E2F binding sites in cellular promoters mediate E1A trans
activation. A computer-assisted analysis of the GenBank
data base has identified a number of cellular genes that
contain possible binding sites for the E2F transcription
factor, and direct binding assays have confirmed that each of
these sites does indeed bind E2F (8, 15). Previous experi-
ments have demonstrated that E2F is important for a basal
expression of both DHFR gene (3) and c-myc gene (19, 25)
transcription and is involved in the E1A induction of the
c-myc gene through the P2 promoter (8, 14, 25). We wished
to extend these observations to determine the functional
importance of E2F sites in other genes and thus the general
relevance of E2F to activation of cellular transcription by
E1A. Therefore, we used transient transfection assays to
compare the wild-type promoters, containing all the signals
necessary for efficient transcription, with promoters contain-
ing site-directed mutations which abolish E2F interactions.

We began our analysis by comparing an N-myc promoter
extending to −1619 relative to the cap site with promoters
deleted to −142 and containing either wild-type or mutant
E2F sites (Fig. 1). The N-myc promoter contains a single
E2F site at −120 to −127 and two overlapping E2F sites at
−142 to −131. The constructs were tested by cotransfection
with an E1A-expressing plasmid into LMTK− cells. Trans-
fection of the E1A-expressing plasmid pGE1A with the
−1619 N-myc/CAT construct resulted in an approximately
fivefold stimulation of CAT activity over that seen in cells
transfected with the target plasmid alone (Fig. 2A). This
level of induction or a slightly higher level was also achieved
with the N-myc promoter deletion mutant that retained only
142 bp of upstream sequence that includes the E2F binding
sites. However, a −142 promoter containing site-directed
mutations that abolished all possible E2F binding sites
was not responsive to E1A. These results therefore demon-
strate that the N-myc promoter is indeed responsive to E1A

FIG. 1. Schematic representation of the N-myc and DHFR wild-
type and mutant promoters. (A) Construction of the N-myc promotor
mutations. The full-length N-myc promoter is shown schem-
atically at the top. An N-myc promoter deleted to position −122
was constructed by isolating the small NarI-to-BamHI restriction
fragment and reintroducing this fragment back into the parent vector
after addition of a BglII linker at the NarI site. The N-myc 142 and
142 (-E2F) promoters were reconstructed from N-myc−122 by syn-
thesizing double-stranded oligonucleotides encoding nucleotides
−123 to −142 containing either wild-type or mutated E2F binding
sites. Boxes depict E2F binding sites. Arrows indicate the first
transcriptional start site. (B) The DHFR promoter (top) containing
all signals necessary for full expression (23) was used for oligonu-
cleotide-directed site-specific mutagenesis of the first (DHFR [site 1]),
the second (DHFR [site 2]), or both (DHFR [site 1,2]) E2F
binding sites. WT, wild type.
and that the E2F binding sites are required for this activation.

The DHFR promoter is also efficiently trans activated by adenovirus E1A as shown in Fig. 2B. Recent experiments have indicated that sequences within 147 bp of the DHFR major transcription start site contain all the signals necessary for efficient transcription (23). This minimal promoter has been demonstrated to contain two overlapping E2F binding sites, similar to those found at −142 to −131 in the N-myc promoter (Fig. 1), located at positions +3 to +13 relative to the major transcription start site (Fig. 2A). To determine the importance of these sites for E1A trans activation, we used cotransfection assays to test DHFR promoters that were truncated to position −147 and which contained either wild-type or mutant E2F binding sites (Fig. 2B). Cotransfection of the −147 DHFR promoter with the E1A-expressing plasmid resulted in a 5- to 10-fold stimulation of transcription from the DHFR promoter. Mutation of both of the E2F binding sites virtually abolished trans activation by E1A. Thus, as was the case for the N-myc promoter, the E2F binding sites are critical for trans activation of the DHFR promoter by E1A. From these results, as well as previous experiments (8, 25), we conclude that the c-myc, N-myc, and DHFR promoters are all responsive to E1A trans activation and that this response is dependent on E2F binding.

A single E2F recognition site is sufficient for E1A trans activation. An inspection of the E2F binding sites within the E1A-regulated genes revealed a common motif differing from that found in the adenovirus type 5 E2 promoter. The DHFR, N-myc, and c-myc promoters each contain a motif consisting of two E2F binding sites which, while oriented in the same manner as in the E2 promoter, overlap by 4 bp, forming a near-perfect dyad repeat (Fig. 3). In contrast, although the E2F sites in the E2 promoter also are a dyad repeat, the centers of the elements in the E2 promoter are separated by 25 bp or slightly more than two helical turns. The functional significance of a nucleotide sequence is often suggested by evolutionary conservation, and such an analysis of these E2F recognition sites is summarized in Fig. 3. Clearly, the dyad symmetry of the overlapping E2F recognition site motif is highly conserved through evolution. This is particularly striking in the DHFR locus, where this sequence is absolutely conserved among human, hamster, and mouse genes. In fact, this element shows greater conservation than the DHFR coding sequence. Interestingly, this motif is also present in the adenovirus type 5 E1A enhancer, and a comparison of the adenovirus E1A enhancer sequence in a variety of viral serotypes reveals strong conservation. As the E1A gene must be expressed immediately upon infection, it is perhaps not surprising that it contains transcription factor binding motifs similar to that found in cellular promoters. One might presume that the E1A gene must function as a cellular promoter without the benefit of alterations induced by the E1A gene products or other early viral genes such as E4.

Although the E2F binding sites in four independent promoters conserve this motif, this arrangement is not critical for the E1A trans activation event. We mutated either half of the element or the entire element in the context of the DHFR promoter (Fig. 1). The constructs were transfected into LMTK− cells with or without pGE1A. As shown in Fig. 2B, mutation of one-half of the element, regardless of which half was mutated, did not eliminate E1A trans activation. Mutation of the entire element, however, abolished the response to E1A. The data shown in Fig. 2B are representative of multiple experiments performed in both LMTK− and Vero cell types and have been corrected for minor fluctuations in transfection efficiency. We therefore conclude that although the overlapping sites are highly conserved, only one-half of this motif, representing a single E2F recognition site, is required for a response to E1A, consistent with previous results (13). It does appear, however, that optimal activity requires the full site, since the extent of trans activation was reduced with each of the half-site mutants, particularly the site 2 mutant. This is also consistent with other experiments in which the constitutive basal activity of the single-site mutants has been lower than that of the wild-type DHFR promoter, depending on the growth state of the cells at the time of transfection (26).

Transcription activation by E1A does not require coopera-

FIG. 2. Activation of the N-myc and DHFR promoters by E1A. (A) LMTK− cells were cotransfected with 2 μg of the N-myc-CAT construct and 0 (−) or 10 μg (+) of the E1A-expressing plasmid pGE1A. The N-myc construct used is indicated below each group of lanes. Extracts were prepared and assayed for CAT activity as described in Materials and Methods. (B) The wild-type (WT) and DHFR mutant promoters were linked to the CAT reporter gene and cotransfected with the E1A-expressing plasmid pGE1A. Extracts were prepared 36 h after transfection and assayed for CAT activity as described in Materials and Methods. Each transfection contained an internal control, as described in Materials and Methods, to correct for transfection efficiencies.
plexes, suggesting that caused no complex. Furthermore, is dependent on sites of E2F activity. The results demonstrate that the adenovirus E2 promoter is required for the E1A-mediated trans activation of these promoters. Finally, the identification of E2F binding sites in multiple cellular promoters has led to the recognition of a cellular E2F binding site which is composed of two overlapping half-sites. Although the conservation suggests a functional importance, only a single E2F site (a half-site) is required for E1A trans activation. We suspect that the majority of the E1A effect through E2F is the result of a stimulation of E2F DNA binding activity, dependent on E1A, that may involve phosphorylation of the factor (2, 20). This results in an increased concentration of active factor that can bind to DNA. Recent experiments also demonstrate that E2F can be found in complexes with cellular proteins and that E1A can dissociate E2F from these complexes (1). If these complexes are inhibitory for transcription, then this action of E1A may also contribute to the trans activation of an E2F-dependent promoter.

Whether E1A can trans activate every gene that may possess an E2F binding site is not clear, but the fact that each gene thus far assayed does respond in this way indicates that this may be a general phenomenon. Although our assays have utilized transient transfections to measure the effects of E1A and the role of the E2F elements in this control, our previous experiments have shown that the endogenous c-myc gene is stimulated by adenovirus infection (8). Moreover, other experiments have shown that amplified, endogenous DHFR genes were stimulated by adenovirus infection (30). Subsequent experiments by these investigators suggested that the activation was posttranscriptional since transcription rates appeared to be unchanged (29). However, since the transcription rates measured in these experiments were quite low, such a conclusion must be considered tenuous. Our findings concerning the role of the E2F transcription factor in the E1A-mediated activation of the DHFR gene would suggest that at least one component of this activation involves control of transcription initiation.

These results also underscore the fact that E1A-mediated activation of transcription can be specific and can require a distinct promoter element, in this case an E2F binding site. Other reports have suggested that E1A trans activation was nonspecific, often showing no evidence for requirement of a
specific promoter element, leading to the interpretation that general transcription factors may be targeted (11, 24, 27). A more likely explanation is that some promoters may contain multiple E1A-responsive elements such that the elimination of any one is not sufficient to prevent trans activation. Furthermore, it is also clear that a TATA factor can be targeted by E1A (22, 28), and in many cases, this is likely responsible for the general activation that is observed. The results we present here clearly show that a unique site can be critical for E1A trans activation.

Our analyses also suggest that the E2F binding sites in these cellular promoters are intrinsically different from those present in the adenovirus E2 promoter. The E2 promoter contains two E2F sites that together form a dyad repeat separated by 25 bp. This arrangement is critical for the cooperative binding of the E2F-E4 protein complex since any alteration in the spacing or orientation of the recognition sites prevents stable complex formation (7, 20). As far as we are aware, this precise arrangement is found only in the E2 promoter. This unique arrangement of the E2F sites in the E2 promoter is critical for the stable binding of the E2F-E4 complex (7, 20). In contrast, the E2F recognition element found in the DHFR promoter consists of an overlapping motif that places the two E2F binding sites on opposite sides of the DNA helix. Interestingly, this motif is also conserved in the E1A enhancer of various serotypes of adenovirus. Of the six serotypes available in the DNA sequence library (GenBank), five contain a perfect match of the dyad binding site (adenovirus types 2, 3, 4, 5, and 7), while adenovirus type 12 contains a 10 of 12 bp match. The high degree of conservation of this overlapping motif in both cellular and viral regulatory elements strongly suggests that it is of functional significance.

Although it is possible that the arrangement of E2F sites in the DHFR promoter is for the same purpose as the arrangement of sites in the E2 promoter, to allow cooperative binding of a yet-to-be-identified E2F protein complex, we found no evidence for such specificity. We believe that there is likely another explanation for the conservation of this element. A common theme of DNA recognition is the binding of protein dimers to a recognition site with dyad symmetry, each subunit of the dimer making contact with one half-site of the recognition sequence. Although there is no evidence to support the notion that E2F binds as a dimer, there is also no evidence against it. We suggest that this is the normal mode of E2F binding and that the motif found in the DHFR promoter is the full site optimal for binding. In this context, the full site is likely not found in the E2 promoter because of the altered binding properties induced by the E4 protein. The E2F protein can bind a half-site, as present in the E2 promoter or in the DHFR mutants, but presumably with somewhat reduced affinity. Indeed, recent assays suggest a slightly increased half-life on the full site compared with that on a half-site (26). We imagine that the
increase in the level of E2F active in DNA binding brought about by E1A (20) would then obscure any such difference in binding affinity.

ACKNOWLEDGMENTS
S.W.H. is supported by a fellowship from the American Cancer Society (PF-3245). This work was supported by a March of Dimes research grant (1-1158) to J.C.A., a research grant from the American Cancer Society (CD317,A,B) to J.C.A., and Public Health Service grant GM26765 to J.R.N. from the National Institutes of Health.

REFERENCES