Identification of Human Immunodeficiency Virus Envelope Gene Sequences Influencing Viral Entry into CD4-Positive HeLa Cells, T-Leukemia Cells, and Macrophages

BRUCE CHESEBRO, JANE NISHIO, SYLVIA PERRYMAN, ALAN CANN, WILLIAM O’BRIEN, IRVIN S. Y. CHEN, AND KATHY WEHRLY

Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, Montana 59840, and Department of Microbiology and Immunology, UCLA School of Medicine, Los Angeles, California 90024-1678

Received 8 April 1991/Accepted 1 August 1991

Infectious recombinant viruses were constructed from three molecularly cloned human immunodeficiency virus (HIV) strains varying in cell tropism. All recombinants showed a high infectivity titer on phytohemagglutinin-stimulated normal T lymphocytes. However, a 120-bp region of the envelope gene including the area of the V3 hypervariable loop was found to influence infectivity titer on both clone 1022 CD4-positive HeLa cells and CD4-positive CEM leukemia cells. Infectivity for macrophages was more complex. All viruses replicated in macrophages to a low level, but viral sequences both inside and outside the V3 loop region influenced the efficiency of replication. Two experiments showed that the mechanism of restriction of infection of 1022 cells by HIV strain JR-CSF was related to lack of virus entry. First, productive virus infection occurred after transfection of 1022 cells with viral plasmid DNA. Second, the nonpermissive HIV strain JR-CSF could infect 1022 cells when pseudotyped with the envelope of other retroviruses, including human T-cell leukemia virus type I (HTLV-I), HTLV-II, and amphotropic murine leukemia virus. These results demonstrate the possibility that unexpected cell types might be infected with HIV in human patients coinfected with HIV and HTLV-I or HTLV-II.

Human immunodeficiency virus (HIV) is known for its ability to infect CD4-positive T lymphocytes. However, HIV is also capable of infecting other cell types, including macrophages of blood and various organs (22, 39, 45), intestinal epithelial cells (2, 41), brain capillary endothelial cells (53), placental cells (38), and various cells derived from neural and connective tissues (8, 13, 14, 17, 49, 51). HIV-infected macrophages have been observed in human brain tissues (28, 32, 50), and such cells may be involved in the AIDS dementia syndrome. HIV infection of macrophages and T lymphocytes has also been studied in vitro. HIV can be isolated from peripheral blood mononuclear cells (PBMCs) of most seropositive individuals by cocultivating with differentiated macrophages (23, 24) or phytohemagglutinin (PHA)-stimulated CD4-positive lymphoblasts from normal donors (30). These results suggest that the HIV in most patients is either dual tropic for both macrophages and T cells or that mixed macrophage-tropic and T-cell-tropic virus populations coexist in these individuals. Some HIV stocks may show a preference for infecting macrophages rather than T lymphoblasts (22), but other cloned macrophage-tropic HIV strains infect both macrophages and T lymphoblasts (34). However, none of these macrophage-tropic HIV strains infects T-leukemia cell lines. Conversely, many HIV strains have been adapted to continuous laboratory passage in T-cell leukemia lines. These viruses can also infect PHA-stimulated T lymphoblasts but usually fail to infect macrophages (16, 24). Recent data have identified sequences in the HIV envelope gene which appear to be important for macrophage and T-leukemia cell line tropism (42, 47). However, the molecular details of the virus-cell interactions responsible for these differences are currently not well understood and may be important in altering disease pathogenesis.

We have recently generated CD4-positive HeLa cells (clone 1022) capable of being infected by HIV produced by PBMCs of AIDS patients within 0 to 4 days of blood sampling. HIV from 53 of 56 patients readily infected 1022 cells; however, HIV from 3 patients failed to infect these cells (12). Thus, 1022 cells appeared to detect distinguishable patterns of cell tropism among these AIDS patient HIV isolates. In the present study we used several molecularly cloned HIV strains which differed in their abilities to infect 1022 cells. The region of the HIV genome influencing tropism for 1022 cells was identified by using infectious recombinant HIV constructions, and the mechanism of resistance to infection was shown to be related to viral entry.

MATERIALS AND METHODS

Cells. Clone 1022 CD4-positive HeLa cells (12); uninfected A3.01 and CEM human CD4-positive leukemia cells (18); amphotropic murine leukemia virus (MuLV)-infected A3.01 cells (9); 729, an Epstein-Barr virus-transformed human B-lymphocyte cell line (7); human T-cell leukemia virus type II (HTLV-II)-transfected 729 cells (729-neo) (7, 46); and HTLV-I-transformed human lymphoid cells (SLB) (31) were described previously.

Viruses. HIV strains NL4-3 (1), JR-CSF (34), JR-FL (34), and BA-L (22) were propagated on PHA-stimulated normal human PBMC cultures as previously described (12). JR-CSF was previously found to infect macrophages less efficiently than JR-FL (34), and in most of the present experiments
macrophage infection by JR-CSF was detected later than by infection by JR-FL and BA-L.

Construction of infectious recombinant HIV clones. Construction of viruses NF-Xho and NFN-SX was described previously (42). Viruses CN-Sal, CN-Dra, NC-Dra, CNC-DX, CNC-MX, and NCN-AX were made at UCLA by using similar methods. Viruses NCN-SB, SN, SM, MN, and NB were made at the Rocky Mountain Laboratories by using a modified version of pNL4-3 obtained from Malcolm Martin, National Institute of Allergy and Infectious Diseases, Bethesda, Md. This clone contained the pNL4-3 insert ligated into the PvuII site of a pUC18 vector lacking the polylinker segment. Subsequently, we removed an extra Stul site in the 5' flanking region by excision of two FspI fragments of 614 and 457 bp. This vector, pNL4-3-10-17, contained unique restriction sites at 6822 (StuI), 7250 (NheI), and 8465 (BamHI) and produced infectious HIV after transfection into HeLa 1022 cells or PHA-stimulated PBMCs. Recombinant plasmids were created by using polymerase chain reaction with oligonucleotide containing the Stul, NheI, or BamHI sites in the NL4-3 sequence to amplify DNA from pBRNBJRCSF (5). Conditions were 30 cycles of 94°C for 1 min, 40 or 50°C for 1 min and 72°C for 2 min, 200 μM deoxynucleoside triphosphate, 0.1 μM each oligonucleotide, 1 U of Taq polymerase (Promega) per 50 μl in 50 μl of 1× commercial buffer from Promega. Sense strand oligonucleotides were 6813 (StuI), 5'-TTA CAC AGG CCT GTC AGG-3'; 7241 (NheI), 5'-CAG ATA GCT AGG AAA TTA GAG-3'; and 7097 (MluI), 5'-GTC AGG ACC CCC AAC AAT ACG CGT AAA AGG-3'. Antisense strand oligonucleotides were 7129C (MluI), 5'-CCT TTA CGT GTA TTG TTG GGT GCT GTA CA-3'; 7262C (NheI), 5'-GTC TCT TAA TTT GCT AGC TAT CTG-3'; and 8472C (BamHI), 5'-GCT GAT CCG TTC ACT AAT-3'. After phenol-chloroform extraction and ethanol precipitation, amplified DNA was digested with the appropriate restriction enzymes, reextracted and precipitated and then ligated into clones of pNL4-3-10-17 which had the appropriate NL4-3 fragment previously excised and substituted by an irrelevant ‘stuffer’ DNA fragment or synthetic oligonucleotides.

A unique MluI site was introduced into pNL4-3 by first inserting a pair of synthetic oligonucleotides containing Stul, MluI, XbaI, SacII, and NheI sites between the unique Stul and NheI sites of pNL4-3-10-17. The upper strand was 5'-CCT ACG GTT GTA CAC CGC GG-3', and the lower strand was 5'-CTA GCC GCG GTG TAG ACC CGT AGG-3'. Then sequences from NL4-3 and JR-CSF were amplified by polymerase chain reaction with oligonucleotides 6813 (StuI) plus 7129C (MluI) or 7097 (MluI) plus 7262C (NheI), and these fragments were inserted sequentially into the appropriate Stul, MluI, and NheI sites of the vector described above to create viruses NCN-SM and MN as well as NL4-3 and JR-CSF, all containing a unique MluI site. The creation of this new MluI site did not alter the amino acid sequence of NL4-3, and the live HIV derived from this clone was indistinguishable from the original NL4-3 in the infectivity experiments described in this paper.

To produce infectious HIV stocks, recombinant viral plasmids were transfected into 3-day PHA-stimulated PBMCs. Cells were washed once in serum-free RPMI 1640 and resuspended at 5 × 10^6 cells per ml with DNA at 1 μg/ml in hypotonic DEAE-dextran transfection medium using 67 μM RPMI 1640 (27). Cells were incubated at 37°C for 5 to 10 min, washed once by centrifugation with serum-free RPMI 1640, resuspended at 2 × 10^6 cells per ml in RPMI 1640–15% fetal bovine serum–5% interleukin-2 (Electronucleonics), and cultured with an equal volume of untransfected cells at the same concentration in the same medium. Stocks were made from culture fluid taken 1 to 2 days prior to maximum visible cytopathic effect. In some experiments plasmids were transfected into 3 × 10^5 1022 cells in 35-mm wells by using the calcium phosphate technique. On the following day cells were trypsinized and split into two separate wells, and 24 h later 0.5 × 10^6 to 1 × 10^6 3-day PHA-stimulated lymphoblasts were added to wells. One day later supernatant lymphocytes were removed and cultured in 24-well plates with medium containing 5% interleukin-2. Supernatant fluid was followed for reverse transcriptase, and virus stocks were made from positive wells as usual.

HIV infectivity. Viruses were titered on HeLa clone 1022 cells by focal immunoassay or on PHA-stimulated PBMC cultures by endpoint dilution (10, 12). Human macrophage cultures were prepared from monocytes purified from peripheral blood of normal donors by adherence and EDTA elution on dishes coated with gelatin plus fibrinogen (20). Cells were cultured at 37°C in 24-well plates at 1.5 × 10^6 cells per well in 1.5 ml of RPMI 1640 with 10% heat-inactivated human serum. Medium was changed on day 4, and cells and wells were washed with 0.2 ml of undiluted HIV stock on day 6 or 7. Cells were washed three or four times with medium 2 days later to remove input virus, and medium was changed every 4 days thereafter. HIV infection was detected by using supernatant fluid to transfer HIV infection to PHA-stimulated PBMC cultures or by following reverse transcriptase activity in supernatant fluid by a dot blot assay (54). In some experiments positive spots were excised and radioactivity was analyzed in a liquid scintillation counter.

Infection of CEM cells was done by incubating 0.2 ml of undiluted virus stock with 10^6 cells in 1.5 ml of medium with polybrene at 8 μg/ml. Two days later cells were split 1:4 as usual. This was repeated every 3 to 4 days to keep the cell concentration between 5 × 10^6 and 2 × 10^7/ml. Supernatant fluid was assayed every 3 to 4 days for reverse transcriptase (54).

Transfection. 1022 cells and normal HeLa cells were transfected with infectious molecular clones of HIV strain NL4-3 and JR-CSF by using the calcium phosphate precipitate method as previously described (11). Plasmid DNA of infectious molecular clones, pBRNBJRCSF, and pNL4-3 was transfected into 729, 729-neo, SLB, A3.01, and amphotropic MuLV-infected A3.01 cells by using electroporation at 960 μF and 250 V. Two days later, dilutions of electroporated cells were plated in culture wells previously seeded with normal HeLa or CD4-positive HeLa clone 1022 cells. Suspended cells were removed after 24 h, and 2 days later wells were fixed and scored by focal immunoassay for HIV (10, 12).

RESULTS

Initially four HIV strains were tested for infectivity in 1022 cells, CEM CD4-positive leukemia cells, macrophages, and PHA-stimulated PBMCs. All four viruses readily infected the PHA-stimulated PBMCs. However, three HIV strains, JR-CSF, JR-FL, and BA-L, infected macrophages at different levels but failed to infect 1022 cells or CEM cells (Table 1). In contrast, the T-cell-tropic HIV, strain NL4-3, infected 1022 cells, and CEM cells but failed to produce significant levels of reverse transcriptase after infection of macrophages (Table 1). Thus, among these HIV strains there was an inverse correlation between ability to infect macrophages versus 1022 or CEM cells.
Infec tivity of recombinant HIV constructs. Infectious molecular clones were available for strains JR-CSF, JR-FL, and NL4-3. Therefore, recombinant infectious HIV constructs were made by exchanging different portions of these HIV genomes. Constructs were used to determine which region(s) of the viral genome influenced infectivity of various cell types. All constructs had a high infectivity titer on PHA-stimulated PBMCs (Fig. 1). Titters were not altered by removal of macrophages and monocytes by plastic adherence prior to infection (data not shown). Thus, the majority of infected cells in these cultures were CD4-positive lymphocytes, and no differences in tropism were observed among the constructs tested. In contrast, on clone 1022 CD4-positive HeLa cells recombinant constructs segregated into two groups according to infectivity titters. One group gave no detectable titters, and the other group gave titters similar to those observed on PHA blasts (Fig. 1). The smallest fragment which could abolish NL4-3 infectivity in 1022 cells was a 120-bp region of JR-CSF between an MluI site at position 7121 and a NheI site at position 7250 in construct NCN-MN. All other constructs containing this portion of JR-CSF or JR-FL also failed to infect 1022 cells. Furthermore, in the background of the JR-CSF genome, the DraiII-to-the XhoI insert of NL4-3 in construct CNC-DX was sufficient to permit 1022 infectivity, whereas presence of the NL4-3 portion from MsrII to XhoI in construct CNC-DX lacked 1022 infectivity. These two constructs differed only for the region between DraII and MsrII, and thus these results supported the conclusion that the region of envelope from DraII to MsrII around the V3 loop was critical for cell tropism. All recombinant constructs were also tested on CEM leukemia cells, and results were identical to those observed with 1022 cells.

Macrophage infectivity was tested by infection with undiluted virus stocks because in preliminary experiments neither JR-CSF nor JR-FL strains could infect macrophages beyond the 10−1 dilution (data not shown). Replication efficiency in macrophages was tested by analysis of reverse transcriptase activity in supernatant fluid between 7 and 21 days after infection. Macrophage tropism appeared to be more complex than tropism for 1022 and CEM cells. All constructs produced HIV infectivity detectable by transfer of supernatant to PHA blasts cultures (data not shown). However, the constructs differed significantly in peak levels of reverse transcriptase produced. All viruses which infected 1022 cells or CEM cells showed only background levels of reverse transcriptase (Fig. 1). In contrast viruses NFN-SX and NCN-SB with large envelope gene inserts from JR-FL and JR-CSF respectively showed a 10- to 20-fold increase in reverse transcriptase levels. However, cultures of recombinants with smaller inserts from this envelope region consistently had lower reverse transcriptase levels, although viruses NLN-SN and -MN with the V3 region of JR-CSF were always three- to fourfold above the background levels seen with other constructs (Fig. 1). Thus, high HIV replication efficiency in macrophages appeared to require JR-CSF sequences within the V3 loop but also was significantly augmented by the presence of other envelope sequences further downstream from the V3 loop in JR-CSF and JR-FL. However, two viruses (CNC-MX and NCN-AX) replicated poorly in macrophages as well as in CEM and 1022 cells, even though both contained the V3 loop region of JR-CSF. Thus, complex interactions between different viral gene sequences appeared to be responsible for these phenotypes.

Transfection of infectious HIV DNA. In some areas of the HIV envelope gene overlapping open reading frames encoding tat, rev, and vpu occur, but in the MluI-to-NheI region found to influence cell tropism, the envelope protein itself is the only known open reading frame (42). Thus, it appeared likely that structural differences in envelope protein were responsible for the differences in cell tropism detected in our experiments. Since envelope proteins are involved in interactions with cellular receptors and virus-cell fusion during the viral entry phase of infection, it is possible that the infectivity differences observed might represent different abilities of HIV strains to enter the various target cells used. To test this possibility, the usual HIV entry into 1022 cells was bypassed with two different approaches: (i) direct transfection of infectious viral DNA clones into cells and (ii) phenotypic mixing to form HIV pseudotypes with envelope proteins of other retroviruses capable of entering cells through different receptors. 1022 cells were highly susceptible to transfection by cloned viral DNA, and expression of HIV structural proteins was detected in 10 to 50% of the cells 48 h after transfection with either NL4-3 or JR-CSF (Fig. 2). However, whereas NL4-3 induced formation of massive syncytia in the 1022 cells, JR-CSF caused only rare syncytia, usually with less than 5 nuclei, and the majority of cells expressing viral protein in these cultures remained mononuclear (Fig. 2). Despite this difference in virus-induced cell fusion, 1022 cells transfected with either virus made infectious HIV which could be transferred to PHA-stimulated PBMCs by cocultivation (data not shown). Thus, introduction of JR-CSF genomes into 1022 cells by transfection led to productive infection, and this suggested that the main block to successful infection of 1022 cells by JR-CSF was at the level of viral entry.

Pseudotyping of HIV by HTLV-I and HTLV-II. We have previously shown that HIV genomes pseudotyped by mixed infection with murine leukemia viruses could successfully enter and productively infect various CD4-negative human and mouse cell lines (11). We recently observed that both 1022 cells and HeLa cells could be infected by both HTLV-I and HTLV-II. Therefore, it was also of interest to test

Table 1: Comparative infectivity of four HIV strains in various cells

<table>
<thead>
<tr>
<th>HIV strain</th>
<th>Infec tivity titera</th>
<th>Reverse transcriptasea</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PHA blasts</td>
<td>HeLa 1022</td>
</tr>
<tr>
<td>NL4-3</td>
<td>1 × 10⁴</td>
<td>4.4 × 10³</td>
</tr>
<tr>
<td>JR-CSF</td>
<td>2 × 10⁴</td>
<td><3</td>
</tr>
<tr>
<td>JR-FL</td>
<td>1 × 10⁴</td>
<td><3</td>
</tr>
<tr>
<td>BA-L</td>
<td>1 × 10⁴</td>
<td><3</td>
</tr>
</tbody>
</table>

* Titer in HeLa 1022 cells represents focus-forming units per 0.2 ml, as detected by focal immunoassay; standard errors were within 30% of values shown. Titer in PHA-stimulated PBMC blasts represents 50% tissue culture infectious doses per 0.2 ml. Standard error is within 10⁰ of the values shown.

* Macrophage infectivity was determined by culturing monocytes (20) in RPMI 1640 with 10% human serum. Cells were infected with 0.2 ml of undiluted HIV stock at 6 to 7 days after initiating cultures. Infection was monitored by measuring reverse transcriptase in the supernatant fluid at 3- to 4-day intervals from day 3 to day 24 by using a 32P dot blot assay (54). CEM cells were infected and monitored in a similar fashion. Values shown are cpm/5 μl of supernatant fluid and were determined by liquid scintillation counting of positive spots detected by autoradiography. Background was 40 to 50 cpm/5 μl. The earliest day of reverse transcriptase-positive supernatant was day 8 for JR-CSF, day 14 for JR-FL, day 14 for BA-L, and day 17 for JR-CSF. NL4-3 remained negative through day 24. Values shown are mean peak counts per minute observed in three experiments. Macrophage culture supernatant fluid from day 8 to 24 was also used to infect PHA-stimulated PBMCs, and positive HIV infectivity was detected from all macrophage cultures including those with only background reverse transcriptase levels.
whether JR-CSF infection of 1022 cells could be achieved by using pseudotyped retrovirus particles containing HIV RNA genomes and non-HIV envelope proteins from HTLV-I or -II. This approach used the usual virus-cell interactions and fusion processes which occur during retrovirus infection, rather than the artificial situation of transfection by high amounts of calcium phosphate-precipitated DNA. Furthermore, since pseudotyped virus particles might form in vivo in human patients infected by HIV and HTLV-I or -II (6, 36, 43), this experiment would test the possible effects on cell tropism of pseudotyping by these human retroviruses. To obtain mixed retrovirus infections and pseudotype production, uninfected clone 729 human B-lymphocyte leukemia cells or 729-neo cells chronically infected by HTLV-II or SLB cells infected with HTLV-I were transfected with cloned infectious DNA of HIV strains NL4-3 or JR-CSF by using the electroporation method. Dilutions of these cells were used to infect both 1022 cells and normal CD4-negative HeLa cells, and cultures were followed for foci of HIV infection. As expected, uninfected 729 cells transfected with NL4-3 could infect 1022 cells but not normal HeLa cells, whereas uninfected 729 cells transfected with JR-CSF could infect neither 1022 nor normal HeLa cells (Table 2). In contrast, HTLV-II-infected 729 cells (729-neo) and HTLV-I-infected SLB cells transfected with JR-CSF could transfer HIV infection to both 1022 cells and normal HeLa cells. Similar results were seen after transfection of NL4-3. Thus, coinfection of human leukemia cells by HTLV-I or -II and the JR-CSF strain of HIV produced viruses capable of infecting both CD4-positive and CD4-negative HeLa cells, presumably by using the receptors for HTLV-I or -II. Once viral entry was achieved, these infected cells produced HIV proteins detected by the focal immunoassay as well as infectious HIV virions (data not shown). Similar results were also obtained with 1022 cells and HeLa cells by using pseudotyped HIV produced when human A3.01 leukemia cells were transfected with amphotropic MuLV before transfection with JR-CSF DNA (Table 2). Infection of 1022 cells or HeLa cells by these amphotropic MuLV pseudotypes could be blocked by preinfection of the target cells with

![Image of Virus Structure](http://jvi.asm.org/)

Table 1. Comparison of HIV infectivity in HeLa 1022 cells, CEM leukemia cells, macrophages, and normal PHA-stimulated PBMCs by using infectious HIV molecular clones NL4-3, JR-FL, JR-CSF and molecular recombinant constructs of these clones. Titers in HeLa 1022 cells are focus-forming units/0.2 μl supernatant infectivity using infectious pseudotyped virus. Values shown are mean peak cpm/μl supernatant and are taken from two to four experiments.
amphotropic MuLV, as was shown previously with NL4-3 (11). This confirmed that the mechanism of infection by JR-CSF involved viral pseudotype formation and utilization of the cellular receptor for amphotropic MuLV.

DISCUSSION

Among the recombinant HIV strains used in this study tropism for macrophages and 1022 cells was mutually exclusive. No dual-tropic strains were detected. The present results were similar to those of recent studies using different HIV clones which found no dual-tropic recombinants capable of infecting both macrophages and T-leukemia cell lines (29, 47). In our studies the recombinant virus strains detected by 1022 cells could also infect CEM T-leukemia cells. Therefore, 1022 cells appeared to be selective for T-leukemia cell line-tropic HIV clones. However, 1022 cells are able to detect HIV directly from PBMCs of most AIDS patients (12), whereas CEM and other leukemia cells cannot. Thus, 1022 cells appear to be less restrictive than T-leukemia cell lines but more restrictive than PHA-stimulated lymphoblasts, which can propagate most HIV isolates efficiently. The present results indicate that the main mechanism of resistance of 1022 cells to infection by macrophage-tropic clones is lack of viral entry. This conclusion is in agreement with previous results showing that JR-CSF could not enter or infect HUT 78 or A3.01 T-cell leukemia lines (5). It was interesting that HIV pseudotyping by other retroviruses could overcome this resistance to infection. Since a significant number of HIV-infected drug addicts are also infected with HTLV-I or -II (6, 36, 43), it is possible that similar pseudotyping could occur in these individuals. If so, this might change the pattern of infection and/or manifestations of disease in these patients.

Recent studies have shown that JR-FL and JR-CSF envelope protein show high binding affinity for CD4 similar to NL4-3 (4). Thus, it may not be surprising that cell tropism differences among these viruses did not map to the CD4-binding region of the envelope. In contrast, the MluI-to-NheI region of the envelope involved in macrophage and 1022 cell tropism includes the V3 hypervariable loop structure (25) rather than the CD4-binding region or gp41 fusion domain (21, 33, 35) (Fig. 3). Type-specific antibodies have been found to recognize the V3 loop, block cell fusion, and neutralize virus infectivity (25, 37, 44), so the loop appears to be exposed at the outside of the virion and should be available for interactions with cell surface receptors. In addition, recent data indicate that there is a constant se-

![FIG. 2. Expression of HIV proteins after transfection of 1022 cells with infectious molecular clones of strain NL4-3 and JR-CSF. Forty-eight hours after transfection, cells were fixed and stained with anti-HIV antibodies by using indirect immunoperoxidase for detection (10). Both cultures show many cells positive for viral antigen expression. With NL4-3 most positive cells are multinucleated, but with JR-CSF most positive cells are mononuclear.](http://jvi.asm.org/)

TABLE 2. Pseudotyping of HIV strain JR-CSF by human retroviruses HTLV-I and HTLV-II or amphotropic MuLV results in successful infection of HeLa and HeLa 1022 cells

<table>
<thead>
<tr>
<th>Leukemia cell line</th>
<th>Pseudotyping virus</th>
<th>Transfected HIV</th>
<th>HIV foci/10⁶ cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>HeLa 1022 HeLa</td>
</tr>
<tr>
<td>729</td>
<td>None</td>
<td>NL4-3</td>
<td>3,300 0</td>
</tr>
<tr>
<td>729-neo</td>
<td>HTLV-II</td>
<td>NL4-3</td>
<td>5,600 2,900</td>
</tr>
<tr>
<td>729</td>
<td>None</td>
<td>JR-CSF</td>
<td>0 0</td>
</tr>
<tr>
<td>729-neo</td>
<td>HTLV-II</td>
<td>JR-CSF</td>
<td>1,900 1,450</td>
</tr>
<tr>
<td>729-neo</td>
<td>HTLV-II</td>
<td>None</td>
<td>0 0</td>
</tr>
<tr>
<td>SLB</td>
<td>HTLV-I</td>
<td>NL4-3</td>
<td>375 210</td>
</tr>
<tr>
<td>SLB</td>
<td>HTLV-I</td>
<td>JR-CSF</td>
<td>370 400</td>
</tr>
<tr>
<td>SLB</td>
<td>HTLV-I</td>
<td>None</td>
<td>0 0</td>
</tr>
<tr>
<td>A3.01</td>
<td>None</td>
<td>NL4-3</td>
<td>300 0</td>
</tr>
<tr>
<td>A3.01</td>
<td>Amphi</td>
<td>NL4-3</td>
<td>15 90</td>
</tr>
<tr>
<td>A3.01</td>
<td>None</td>
<td>JR-CSF</td>
<td>0 0</td>
</tr>
<tr>
<td>A3.01</td>
<td>Amphi</td>
<td>JR-CSF</td>
<td>280 610</td>
</tr>
<tr>
<td>A3.01</td>
<td>Amphi</td>
<td>None</td>
<td>0 0</td>
</tr>
</tbody>
</table>

* Titters are expressed as HIV foci per 10⁶ leukemia cells plated. Results are geometric means for two or three replicate experiments. Amphi, amphotropic MuLV. SLB cells not infected with HTLV-I were unavailable because this cell line was derived by using HTLV-I as the transforming virus (31).
sequence of four amino acids (Gly-Pro-Gly-Arg) at the tip of the V3 loop in many HIV clones and that mutations altering these amino acids inhibit fusion of CD4-positive HeLa cells by HIV envelope (19). Interestingly, HIV strains NL4-3 and JR-CSF both contain this sequence, and therefore both should be competent to induce cell fusion. Since JR-CSF does not fuse or infect 1022 cells efficiently, this virus must lack other sequences in the MluI-to-NheI region which are also required for fusion and entry of 1022 cells. NL4-3 and JR-CSF differ by 11 amino acids between the MluI and NheI sites (Fig. 3). None of these changes are within the V3 loop. However, it is unclear at present how the extreme sequence variability in the V3 loop could give rise to the general subgroup of HIV strains with tropism for T cells or macrophages. It seems likely that some common structural features would be required to maintain these consistent patterns of infectivity in spite of the high variability of the loop itself. Recent data suggest that portions of the V3 loop can be hydrolyzed by various proteases, and such proteolysis might be important in activation of the fusogenic activity of the envelope protein (15, 26). If in different cell types such proteolysis were carried out by cellular enzymes with different target sequences, the variability of the amino acid sequence around the V3 loop might determine susceptibility of the HIV envelope to proteolysis and this might in turn influence entry of a particular cell type by a particular HIV strain. Alternatively, proteolysis of the V3 loop of different HIV strains by the same protease would still produce protein structures with different sequences which might differ in their abilities to carry out the fusion step with different cell types.

The present results showing the importance of the MluI- to-NheI region in cell tropism differences among HIV strains NL4-3, JR-CSF, and JR-FL are in agreement with studies using HIV strains SF2 and SF162 (47) and with recent studies using BA-L and IIB strains (29). However, it is unclear at present whether these findings can be generalized to all HIV strains. Furthermore, none of these results exclude the possibility that other regions of the HIV genome also play an important role in cell tropism. Two previous studies suggested that adjacent envelope gene sequences could also influence HIV productivity or infectivity in macrophages (42) or T-leukemia cell lines (47). In addition, on the basis of results with murine and avian retroviruses, it should be expected that tissue-specific enhancer elements in the long terminal repeat or other regions might also influence cell tropism of HIV (3, 48, 52). Since tropism effects mapping to the long terminal repeat were not observed in our studies, it is likely that the virus strains we compared did not differ functionally in long terminal repeat or other regions which also might influence cell tropism. A wider variety of HIV strains will have to be studied to search for additional viral factors involved in this phenomenon.

REFERENCES
15. Clements, G. J., M. J. Price-Jones, P. E. Stephens, C. Sutton, T. F. Schulz, P. R. Clapham, J. A. McKeating, M. O. McClure,

30. Stoler, M. H., T. A. Eskin, S. Benn, R. C. Angerer, and L. M.

