Transduction of c-src Coding and Intron Sequences by a Transformation-Defective Deletion Mutant of Rous Sarcoma Virus

MEEI-MEEI SOONG,†‡ SHINJI IJIMA,†‡ AND LU-HAI WANG*

The Rockefeller University, New York, New York 10021-6399

Received 6 March 1986/Accepted 13 May 1986

The mechanism of cellular src (c-src) transduction by a transformation-defective deletion mutant, td109, of Rous sarcoma virus was studied by sequence analysis of the recombinational junctions in three td109-derived recovered sarcoma viruses (rASVs). Our results show that two rASVs have been generated by recombination between td109 and c-src at the region between exons 1 and 2 defined previously. Significant homology between td109 and c-src sequences was present at the sites of recombination. The viral and c-src sequence junction of the third rASV was formed by splicing a cryptic donor site at the 5' region of env of td109 to exon 1 of c-src. Various lengths of c-src internal intron 1 sequences were incorporated into all three rASV genomes, which resulted from activation of potential splice donor and acceptor sites. The incorporated intron 1 sequences were absent in the c-src mRNA, excluding its being the precursor for recombination with td109 and implying that initial recombinations most likely took place at the DNA level. A potential splice acceptor site within the incorporated intron 1 sequences in two rASVs was activated and was used for the src mRNA synthesis in infected cells. The normal env mRNA splice acceptor site was used for src mRNA synthesis for the third rASV.

A unique feature of acute oncogenic retroviruses is the presence of transforming genes in their genomes. These genes are obtained from the host by retroviruses via rare recombinational events (1). So far, the vast majority of the acute oncogenic retroviruses have been isolated from tumors developed in the field or in laboratory animals infected spontaneously or experimentally with nonacute retroviruses (42). However, even in the experimentally infected animals, the frequency for the conversion of a nonacute to an acute oncogenic virus is so low that the event cannot necessarily be reproduced under any given experimental conditions. This is not so with a series of transformation-defective (td) deletion mutants of Rous sarcoma virus (RSV) (14). These mutants, which all retain a portion of the RSV transforming gene src, are capable of recombining with cellular src (c-src) to regenerate transforming viruses at predictable frequencies (10, 13, 14, 46, 52, 53). Analyses of the genomic sequences of mutants and of recovered sarcoma viruses (rASVs) derived from them enabled us to conclude that retention of a portion of the 3' src sequence in the mutant virus is both necessary and sufficient for the generation of rASVs (29, 48). Although retention of the 5' src sequence is not essential for generation of rASVs, it appears to be important for producing nondefective rASVs (29, 48). All the rASVs derived from td viruses retaining both 5' and 3' src sequences are nondefective (50, 52–54), whereas all the rASVs derived from a td mutant, td109, which retains the 3' src but lacks the 5' src, and its upstream c-src-derived sequences, are replication defective due to deletions of various lengths of replicative sequences (48). A simple explanation for these observations is that the td viruses containing both 5' and 3' src sequences are able to undergo homologous recombination with c-src, resulting in the insertion of the deleted sequences into the original position. By contrast, td109 would have to undergo nonhomologous recombination at the 5' end with c-src, resulting in the loss of certain replicative sequences (48). This process is similar to the transduction of most c-onc sequences into retroviruses (1). To understand better the mechanism of recombination between td109 and c-src and to explain the origin of deletions in td109-derived rASVs, we molecularly cloned and analyzed the nucleotide sequences of td109 and three rASVs derived from it. Our data provide evidence that initial recombination between td109 and c-src most likely occurred at the DNA level and was mediated by certain partially homologous sequences in the td109 genome and in c-src. Our results also show that some recombination junctions were formed by splicings involving cryptic donor and acceptor sites in the td109 genome and c-src sequences.

MATERIALS AND METHODS

Molecular cloning. Circular viral DNAs were isolated from infected cells as described previously (27, 50). Briefly, DNAs from 20 10-cm dishes of virus-infected cells were extracted by the procedure of Hirt (15); supernatant DNAs were enriched for the circular forms by acidic phenol extraction (57) followed by passage through a Bio-Gel column (36). The circular DNA-enriched materials were checked for the presence and purity of viral DNAs by Southern blots (38). After confirmation, 2 to 3 µg of the DNA was digested with an appropriate restriction enzyme and was cloned into pBR322 DNA according to the standard procedure (22). td109 DNA was digested with EcoRI, and the resulting 2.5-kilobase (kb) gag and 3.6-kb pol-env subgenomic DNA fragments were cloned separately into the EcoRI site of pBR322. rASV3812 and rASV382 circular DNAs were digested with HindIII, and the linearized full-length genomes were cloned into the HindIII site of pBR322. Because of deletions in these rASV genomes, HindIII became a single-cut enzyme for their DNAs. rASV374 DNA was digested with EcoRI, and the linearized full-length genome was cloned into the EcoRI site of pBR322. Similarly, only the EcoRI sites in the U3 regions of the rASV374 DNA remain, because of its internal deletion. The potential DNA fragment

* Corresponding author.
† Present address: Department of Veterinary Pathology, University of Illinois, Urbana, IL 61801.
‡ Present address: Nagoya University, Nagoya, Japan.

http://jvi.asm.org/
containing the recombination junction in each rASV (Fig. 1) as suggested by previous study (48) was prepared from the respective molecularly cloned viral DNAs. The gaps in the the termini of the DNA fragments were filled, and then the fragments were subcloned into the Smal site in the poly linker region of M13mp8 replicative-form DNA (24). After initial sequencing and identification of the recombination sites, the corresponding DNA fragments from parental td109 (Fig. 1) were isolated and were subcloned into M13 by a similar method. The c-src intron 1 DNA fragments were prepared from the plasmid clones pFCl and pFCII, which have been described by Takeya and Hanafusa (41). These fragments were also subcloned into M13 DNA as above. For each DNA fragment subcloned into M13, clones with opposite orientations of the insert were isolated.

Nucleotide sequencing. For viral DNA subcloned in M13, the dideoxy method (32) was used to sequence pairs of clones with opposite polarity. For c-src DNA, sequencing methods of Maxam and Gilbert (23) and Sanger et al. (32) were used.

RNA blotting and hybridization. Poly(A)+ RNAs from rASV3812-infected cells or normal chicken embryo fibroblasts (CEF) were prepared as described before (49, 51). Poly(A)+ RNAs from 12-day-old chicken embryonic brain were isolated by sodium thiocyanate extraction and CsCl-cushioned centrifugation (12, 44). An appropriate amount of RNA from each source was analyzed by agarose gel electrophoresis and RNA blotting (43), and subsequent hybridization and washing were performed as described previously (51). The 32P-labeled DNA probe used for hybridization included the 3' PvuII src fragment (40) and the 0.36-kb XbaI-to-NcoI fragment of rASV3812 DNA (Fig. 1). The RNA blot was hybridized sequentially with the intron 1 and the src probes.

S1 nuclease analysis. Poly(A)+ RNAs from individual rASV-infected cells were isolated as described above. The recombination junction fragment of each rASV (Fig. 1) was prepared from the viral DNA in plasmid clone and was labeled with 32P at its 5' ends, using bacteriophage T4 polynucleotide kinase (22). The plus-strand DNA was removed partially by hybridizing the denatured [32P]DNA with the single-stranded M13 DNA containing the homologous insert in opposite polarity from the plus-strand DNA, followed by gel separation of the hybrid complex from the unhybridized minus-strand DNA. The minus-strand DNA recovered from the gel was used as an S1 nuclease probe. Conditions for DNA-RNA hybridization and for S1 nuclease digestion were similar to the published methods (4, 11). A 10- to 20-μg amount of poly(A)+ RNAs from rASV-infected cells was mixed with the S1 nuclease probe, heat denatured, and then precipitated in ethanol. The nucleic acids were redissolved in 10 to 15 μl of hybridization buffer containing 14 mM PIPES [piperazine-N,N'-bis(2-ethanesulfonic acid)], pH 6.5, 80% formamide, 0.4 N NaCl, and 1 mM EDTA; the mixture was sealed in a capillary. After heating at 85°C for 5 min, the mixture was incubated at 53°C for 15 h. The hybridization mixture was then ejected into 0.2 ml of S1 nuclease buffer containing 50 mM sodium acetate, pH 4.5, 0.25 N NaCl, 1 mM ZnSO4, 50% glycerol, and 3,000 to 5,000 U of S1 nuclease per ml (Bethesda Research Laboratories, Inc., Gaithersburg, Md.); the mixture was incubated at 37°C for 30 min. A 10-μl volume of 0.2 M EDTA and 20 μl of 1 M Tris hydrochloride, pH 8, were added after digestion, and the mixture was extracted with buffered phenol and chloroform. The nucleic acids were concentrated by ethanol precipitation and then were analyzed in sequencing gels by using appropriate sequencing leaders as size markers.

RESULTS AND DISCUSSION

v-src and c-src sequences at the sites of recombination.

Previous sequence analysis of the td109 genome, using defined DNA primers and purified viral RNA, enabled us to determine the precise src deletion in the mutant (29). td109 retains 296 nucleotides of the 3' src sequence but lacks all of the 5' src and 316 nucleotides of its upstream region, including the src mRNA splice acceptor site. In two other studies, the approximate extent of deletions and junctions of recombination in a series of td109-derived rASVs, including the three studied here, were mapped (47, 48). To further pursue the mechanisms for recombination between td109 and c-src, we set out to determine the td109-derived rASV and c-src sequences at the recombination junctions. We cloned a portion of the td109 genome and the complete genomes of rASV3812, rASV374, and rASV382. The genomic structure of the three rASVs (48) is shown in Fig. 1. The subgenomic DNA fragment presumed to contain the junction of recombination in each rASV genome was prepared. In each case, the fragment was flanked by an NcoI site at its 3' end (NcoI cuts at the initiation codon of src [40, 41]) and by a 6-base restriction enzyme site closest to the 5' deletion boundary at its 5' end (Fig. 1). In addition, td109 DNA fragments corresponding to the recombination sites for the three rASVs, and the intron 1 region of c-src DNA, were also isolated (Fig. 1). The intron 1 region of c-src was chosen for analysis because we suspected that it was involved in the recombination with td109. The three rASVs contained all of...
the normal 5' src-specific oligonucleotides (48) and the N-terminal tryptic peptides (17), which suggested that the viruses had the normal src initiation codon located 10 nucleotides downstream from the beginning of exon 2 (41). Therefore, the c-src recombination sites must be located upstream from exon 2. All of the v-src and c-src DNA fragments of interest were subcloned into M13mp8 and sequenced.

Figure 2 shows the nucleotide sequence of the 0.36-kb XhoI-to-NcoI fragment (Fig. 1) of rASV3812. Comparison of this sequence with those of the 0.33-kb XhoI-to-BamHI fragment in td109 pol gene (Fig. 1) and with the intron 1 sequence of c-src revealed the junction of recombination (Fig. 2). The rASV3812 and td109 sequences match up to the position corresponding to nucleotide 3557 in the pol gene of PR-C RSV (33). Subsequently, the rASV sequence matched instead with a c-src intron 1 sequence beginning 662 nucleotides upstream from exon 2 and continuing for 174 nucleotides before skipping the remaining 488 nucleotides of the 3' intron 1 sequence and joining to the c-src exon 2 sequence. At the site of recombination, a significant sequence homology was found between td109 and c-src (Fig. 2). The crossover point is apparently located within the CTCCAC sequence, which is identical between td109 and c-src. This sequence and its upstream homology probably mediated the recombination. The 3' boundary of the 174-base-pair internal segment of c-src intron 1 was marked by a potential splice donor signal sequence GGAGGTAT on c-src DNA (Fig. 3). The joining of this intron 1 sequence to exon 2 apparently occurred by splicing the potential donor site to the normal exon 2 acceptor site (Fig. 3).

The sequence of the 0.44-kb rASV374 DNA fragment is compared with that of the 0.36-kb 3' gag DNA fragment of td109 and with the c-src intron 1 sequence (Fig. 4). The recombination in rASV374 appears to have occurred in the middle of p12 of td109, corresponding to the 3' end of 2.7 kb pol region (33). Downstream from this region, the rASV374 sequence matches with c-src intron 1 sequence beginning 625 nucleotides upstream from exon 2 and continuing for 137 nucleotides before skipping the remaining intron 1 sequence and joining to exon 2. As in the case of rASV3812, similar sequence homology (Fig. 4) between td109 and c-src was observed at the site of recombination and probably promoted the recombination in the generation of rASV374. The sequence data suggest that the recombination junction is located within the TC dinucleotide (Fig. 4). Interestingly, the same cryptic splice donor site of c-src intron 1 mentioned above was used to join the 3' boundary of the intron 1 sequence in rASV374 to exon 2 of c-src.

The mechanism for the generation of rASV3812 and rASV374 is shown in Fig. 3. The recombinations between td109 and c-src occurred at multiple sites and apparently involved short stretches of homologous sequences. A 5/5- and a 10/11-nucleotide homology between FBJ murine leukemia virus genome and c-fos was seen at the 5' and 3' recombination sites, respectively (45). However, it cannot be generalized that such sequence homology is always needed for recombination between a viral genome and c-onc sequences. For example, no similar homology is present at the recombination junctions of src in SR-A or PR-C RSV (33, 41), although some homology is present within the pol-env/junction of avian retroviruses and the region of c-src DNA corresponding to the 5' recombination junction of v-src in BH RSV and in RSV29 (8, 21). In addition, there are only patchy sequence similarities between c-fos and the viral
Section of the text:

- "...is not clear that the same potential donor site of an avian leukemia virus was used for splicing to c-erbB, resulting in the joining of the viral sequence to c-erbB at the same point. Activation of the same cryptic viral splice donor site in these totally independent transductional events implies that although this site appears to be suppressed in the regular processing of viral RNA transcripts, it can be activated if the viral sequence is truncated or joined to a foreign sequence. The secondary structure of the mRNA precursor can affect the pattern of splicing (37)."
- "The joining of exon 1 to the 5' end of the internal intron 1 sequence transduced into the rASV382 genome appears to be formed by splicing between exon 1 donor site and a cryptic splice acceptor sequence, TTTTCTCCAAGGAAAC, located 700 nucleotides upstream from exon 2 (Fig. 6). Similar to the cryptic intron 1 splice donor site described above, this..."
The 5' env-exon 1 junction resulted from a primary or secondary event of recombination between td109 and c-src. For example, the initial recombination could have occurred between a region downstream from the 5' env site in td109 and a region upstream from exon 1 in c-src, and the env-exon 1 junction was subsequently formed by splicing of the td109-c-src primary RNA transcript. Additionally, an intact or 3'-truncated td109 provirus integrated upstream from the c-src gene could also promote the synthesis of a td109-c-src readthrough transcript, which upon splicing gave rise to the recombination junctions in the rASV382 genome. In a separate study, we showed that in avian sarcoma virus UR2, the gag and ros junction had most likely been formed by a splicing event (26). Similarly, it was proposed that the 5' recombination junction between the transforming gene, rel, and the viral replicative sequence in avian reticulendotheliosis virus strain T, was a result of splicing (55).

A few nucleotide differences within the homologous regions were found between the rASVs and their parental td109 and c-src sequences (Fig. 2, 3 and 5). The differences may have resulted from divergence after the recombination, particularly since there is no selection pressure for the conservation of protein functions encoded by the remaining gag and pol sequences in rASV374 and rASV3812. The incorporated intron 1 sequences of c-src have no obvious function either. No sequence variations were found between the pol region of td109 and that of rASV382, which was shown to encode a functional reverse transcriptase (48).

src mRNA splicing acceptor sites in rASV genomes. The src mRNA splice acceptor site of SR-A RSV was deleted in td109 and was not regained from c-src in the three rASV genomes. Previous analyses of the viral RNAs in td109-derived rASV-infected cells showed that the spliced src mRNAs of rASV3812 and rASV374 had a size indistinguishable from that of SR-A and that the src mRNA of rASV382 was larger than that of SR-A (47, 48). It was suggested previously that the env gene splice acceptor site could be used for the formation of src message in rASV382-infected cells (47, 48). However, new splice acceptor sites must be created in rASV3812 and rASV374 genomes for the v-src mRNA formation. Examination of the sequences upstream from the src coding region in the three rASV genomes revealed that there is a potential acceptor site within the intron 1-derived sequence located 84 nucleotides upstream from the AUG codon of src (Fig. 7). To see if this potential acceptor site is used for splicing of src mRNA from these rASVs, we prepared 32P-labeled recombination junction DNA fragments (Fig. 1) from individual rASVs and performed S1 nuclease experiments. The results (Fig. 8) demonstrate that a 434-nucleotide DNA fragment was generated in rASV382, and that a series of fragments with the top band at the position of 85 nucleotides were generated in rASV374. Results similar to those of the rASV374 experiment were obtained with rASV3812 (data not shown). The spliced 5' leader sequence is expected to protect two nucleotides 5' to both of the acceptor sites. The series of DNA fragments separated from one another by one nucleotide in the experiments with rASV3812 and rASV374 were probably generated due to melting of the DNA-RNA hybrid at the ends, followed by digestion of the unpaired DNA terminus by S1 nuclease. The minor bands at position of 93 to 95 nucleotides were also seen in rASV374 and rASV3812 (Fig. 7 and data not shown). The origin of these bands is not clear.

The S1 nuclease experiments confirmed our prediction that the env acceptor site would be used for rASV382 and that the new potential acceptor site in the incorporated intron 1 sequence would be used for rASV374 and rASV3812 in the src mRNA splicing. Since no detectable amount of the
suggested that transduction of c-src into avian leukosis virus in the generation of RSV took place by recombination at the DNA level, since the 5' recombination site was located 16 nucleotides upstream from the acceptor site of c-src exon 1 (39, 41). The 5' recombination between avian myeloblastosis virus-associated helper virus and c-myb also occurred in the intron region of c-myb (19). Precursors or certain rare forms of c-src mRNA containing those intron sequences could have participated in the recombinations. The level of those RNAs may be so low that it was not detected by our analysis. Nevertheless, the precursor mRNA could exist only in the nucleus and has a very short half-life. Therefore, it is spatially and kinetically unfavorable for it to form a complex with the viral genome to be packaged for subsequent recombination during reverse transcription.

Overall, our data suggest strongly that transduction of c-src can occur through recombination at the DNA level, by involving short stretches of homologous sequences or by splicing between the viral genome and c-src sequences. It is very difficult to decide experimentally the stage of recombination between the viral genome and c-src during the viral replication cycle. But it could occur during or after the integration of the viral DNA genome. The recombination junctions observed in these rASVs represent the final products of what may be a multiple-stepped process of recombination between the td virus and c-src. However, it is likely that the 5' v-src-c-src sequence junctions observed in rASV3812 and rASV374 represent the primary event of recombination. By contrast, the corresponding junction in rASV382 is more likely formed after the initial recombinant event. In the latter case, the initial event could be either merely the integration of the td109 provirus upstream from c-src, or a true recombination between td109 and c-src. Our

85-nucleotide fragment was seen in rASV382 RNA, it appeared that the env acceptor site was strongly preferred over the new acceptor site in this virus. This new acceptor site was not functioning in the formation of the 4-kb c-src mRNA as shown previously by S1 nuclease analysis (39) and by our RNA blotting and hybridization experiments (Fig. 9).

Initial step of recombination between td109 and c-src. The data show that various lengths of c-src sequence defined previously as the intron 1 region (41) were incorporated into the rASV genomes. The intron 1 region was defined by comparing the c-src DNA sequence with that of v-src (41), and this definition is supported by S1 nuclease analysis of the c-src mRNA (39). Our results imply that initial recombinations between td109 and c-src have taken place at the DNA level. To assess this hypothesis, we prepared a probe containing the transduced c-src intron 1 sequences from rASV3812 and examined it to see whether the c-src mRNA contained these sequences. The most commonly observed c-src 4-kb mRNA from chicken embryonic brain (Fig. 9) or from CEF (not shown) hybridized strongly with a v-src probe, but not with the intron 1 probe, which in the positive control detected both the rASV3812 genomic and spliced src mRNAs. The result with brain c-src RNA is presented here since the c-src RNA level is higher in the embryonic brain than in any other tissue (26; L.-H. Wang, unpublished data); therefore, its use should increase the chance of detecting even a small amount of the intron 1 probe sequence present in the mRNA. These results provide evidence that initial recombinations between td109 and c-src took place at the DNA level. Our data agree with previous evidence which

FIG. 9. Hybridization of c-src and rASV3812 RNAs with v-src and c-src intron 1 probes. A five-μg amount of poly(A)+ RNA from an rASV3812-infected nonproducer CEF clone and 10 μg of RNA from 12-day-old chicken embryonic brain were analyzed. The src and intron probes indicate the v-src and c-src intron 1-derived probes described in the text. Exposure time with the rASV3812 RNAs was fourfold shorter than that for c-src RNA. Sizes of RNAs are shown in kilobases.
current data only concern the 5′ recombination. Obviously, a second 3′ recombination is needed to obtain the essential viral replicative sequences. The only major difference between td109 and other avian leukemia viruses such as Rous-associated viruses 1 and 2 (ATCC VR-334 and ATCC VR-657) is the presence of a certain 3′ src sequence in the td109 genome. The chance of a 3′ recombination between a viral genome and c-src should be even among these viruses. The 3′ src sequence present in td109 apparently is responsible for the great difference in the frequency of c-src transduction into its genome. The 3′ src presumably promoted the 3′ recombination between the initial td109-c-src recombintant intermediate and the parental td109 to obtain the 3′ viral sequences essential for viral replication. The 3′ src could also play a role in conferring the transforming potential to the otherwise nontransforming c-src gene newly obtained.

The genomic structure of the three rASVs is summarized in Fig. 7. All of them have incorporated a segment of c-src internal intron 1 sequence into their genomes resulting from activation of potential splice donor and acceptor sites. Although no other td109-derived rASVs have been sequenced, previous analyses by Nase T oligonucleotide fingerprinting did not reveal unexpected oligonucleotides in their genomes, in contrast to the three rASVs studied here, which were shown to contain one to three new oligonucleotides (48). The significance of the intron 1 sequence in rASV382 is not clear, since it is not needed for the src mRNA formation (as in the cases of rASV3812 and rASV374), or for viral replication, because apparently it is missing in the genomes of other td109-derived rASVs. Recombinations for the generation of those td109-derived rASVs might have occurred in such a way that only a small amount of sequences other than the p60src coding region were incorporated. For example, recombinations between td109 and c-src could take place upstream from exon 1, followed by a normal splicing to exon 2, eliminating all the intron 1 sequences. The majority of the td109-derived rASVs contain env deletions (48). This suggests that recombination at the pol-env junction has been preferred. Whether there is a corresponding preferred c-src site is not clear. As expected, rASVs derived from td viruses capable of undergoing homologous recombination at the 5′ region of c-src have a normal genomic size and do not contain extra sequences (50, 52–54).

Detection of the cryptic splice donor and acceptor sites in c-src raises the question of their physiological significance. Tissue-specific expression of gene functions by alternative splicing of mRNAs has been reported for several eucaryotic genes (2, 6, 7, 9, 18, 20, 25, 30, 31, 34, 56). We detected multiple forms of smaller c-src-related mRNAs in chicken muscle tissues which could be generated by alternative splicing of c-src RNA transcript (Iijima and Wang, unpublished data). These muscle-specific c-src-related RNAs, lacking most of the coding sequences of p60src, cannot be precursors for recombination with td109 in the generation of rASVs, although they do contain certain sequences derived from the c-src intron 1 region. Embryonic neural tissues have been found to express significantly high levels of p60src kinase activity (5) and of c-src mRNA (26). The N-terminal polypeptide fragments of p60src from neural tissues had a slower electrophoretic mobility than those from CEF or other tissues (J. Brugge, personal communication).

It would be interesting to see whether those potential splice donor and acceptor sites in the c-src intron 1 region are activated in a tissue-specific manner.

ACKNOWLEDGMENTS

We thank Boris Lin for excellent technical assistance, and H. Hanafusa and R. Jove for comments on the manuscript. This work was supported by Public Health Service grants CA29339 and CA18213 from the National Institutes of Health to L.H.W. M.M.S. was a visiting scientist and was supported by Public Health Service Training grant CA24930 from the National Cancer Institute.

LITERATURE CITED

