Effects of Cobra Venom Factor Treatment on Latent Feline Leukemia Virus Infection

ERIC H. KRAUT,1* JENNIFER L. ROJKO,2 RICHARD G. OLSEN,2 AND DARRELL L. TUOMARI2

Division of Hematology and Oncology, Department of Medicine, College of Medicine,1 and Department of Veterinary Pathobiology,2 The Ohio State University, Columbus, Ohio 43210-1228

Received 31 May 1984/Accepted 25 February 1985

The role of the complement system in containment of feline leukemia virus infection was studied by cobra venom factor treatment of feline leukemia virus-immune cats. One to three weeks after cobra venom factor treatment, an increase in viral antigen in marrow myelomonocytic cells and circulating immune complexes was noted. Prevention of reactivation of feline leukemia virus infection may in part depend on an intact complement system.

The majority of adult cats exposed to feline leukemia virus (FeLV) develop a transient viremia, and clearance of the virus is associated with the development of virus-neutralizing antibody and antibody to the feline oncovirus-associated cell membrane antigen (FOCMA) (3, 7, 12, 28). These cats are designated as regressors, and many of them have latent infection present in the bone marrow and lymph nodes as demonstrated by the presence of viral antigen in cultured myelomonocytic and lymphoid cells (29). Prevention of reactivation of FeLV infection in vivo may depend on an intact host immune system, since administration of high-dose steroids to regressor cats results in recurrence of viremia (29).

Although the natural history of FeLV infection and the importance of the immune response in controlling this infection have been intensively studied (4, 8, 13, 14), all the factors important in containing latent infection have not been established. We hypothesized that the complement system might play a role in containment of latent infection because of the following observations. (i) Addition of FeLV to normal human or cat serum activates the complement system with virolysis secondary to the generation of the C5 through C9 membrane attack complex (16). (ii) Antibody to FOCMA present on FeLV-transformed cells can only induce cell lysis in vitro in the presence of complement (6). (iii) Hypocomplementemia, possibly secondary to circulating immune complexes, is found in cats with persistent viremia or feline lymphosarcoma or both (2, 15). (iv) Antibody production against certain antigens and antibody-mediated cytotoxicity may require normal complement activity (17, 20, 21). (v) An intact complement system has been shown to be important in clearance of other viral infections (10).

In this study, we evaluated the role of complement in preventing reactivation of FeLV infection by examining the effects of complement depletion on regressor cats with latent infection.

Self-limiting FeLV infection was established in five adult specific-pathogen-free cats by intraperitoneal injection of the Rickard strain of FeLV in an inoculum of a thymic lymphosarcoma homogenate (5, 24). The regressor status of the cats was confirmed by demonstration of persistent FOCMA antibody titers by a standard membrane immunofluorescence assay (3) and absence of FeLV P27 in peripheral blood neutrophils by a modification of the Hardy test (9, 14, 26). At 16 weeks postinfection, cats were evaluated for reactivatable productive infection. Femoral and humeral bone marrow was collected from cats by a standard technique, and the freshly isolated marrow cells (5 × 10⁶) were then cultured for 6 to 14 days. Reactivable productive infection was demonstrated by cell-associated P27 in cytocentrifuge preparations (25, 26, 29).

Total hemolytic complement in these cats was determined by a modification of the method of Mayer (22) with sheep erythrocytes sensitized with rabbit immunoglobulin M (IgM) antibodies (Cordis, Miami, Fla.) as the target cells.

Immune complex levels were measured by using a modification of an enzyme-linked immunosorbent assay as described by Singh and Tingle (32). In this assay (34), human complement C1q was used as the basic coat, and the staphylococcus protein A horseradish peroxidase (Boehringer Mannheim Chemicals, Indianapolis, Ind.), was used as the enzyme conjugate. Values were expressed as aggregated cat IgG equivalents per milliliter of serum.

Complement depletion was achieved by intraperitoneal injection of cobra venom factor (CVF) derived from Naja haje species (lot no. 74160; Cordis, Miami, Fla.); 200 U/kg were given in four divided doses over 24 h (1).

Before complement depletion, all cats had negative smears for FeLV P27 on blood and bone marrow exams but had evidence of latent viral infection as demonstrated by myelomonocytic cells that were positive for P27 after in vitro culture (29).

<table>
<thead>
<tr>
<th>Weeks post-treatment</th>
<th>No. of cats positive for P27 in*:</th>
<th>FOCMA-L*:</th>
<th>Total hemolytic complement*:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Marrow 0 0</td>
<td>5.2 ± 0.6</td>
<td>52.8 ± 4.4</td>
</tr>
<tr>
<td>1</td>
<td>3 0 0</td>
<td>4.2 ± 1.3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2 1</td>
<td>6.6 ± 0.7</td>
<td>50 ± 8</td>
</tr>
<tr>
<td>3</td>
<td>2 2</td>
<td>6.6 ± 0.7</td>
<td>ND*</td>
</tr>
</tbody>
</table>

* The test group contained five cats.

FOCMA antibody titers are expressed as the base 2 logs of the titers and represent the geometric mean ± standard error of the mean.

Total hemolytic complement units are expressed as the mean ± standard error of the mean.

ND, Not done.

* Corresponding author.
NOTES

low levels
level of immune
as expressed
marrow
bone
two
in complex
blood
to induce
clearing
FeLV
20, 21,
impaired
(Fig. 1).

One week after CVF treatment, when complement deple-
tion was present, three of the five cats were positive for P27
in either blood or bone marrow myelomonocytic cells (Table
1). Two of the five cats were studied 3 months later when
there was no evidence of virus expression in the peripheral
blood or bone marrow. Treatment with saline alone did not
induce viral replication in blood or bone marrow in either
cat.

Since an increase in immune complex levels has been seen
in cats with persistent viremia (2, 34), we next measured
immune complex levels after CVF treatment. Three of the
five cats showed a significant increase in Clq-precipitable
immune complexes within 1 to 3 weeks after treatment. In
two of the cats, this correlated with an increase in P27 in the
bone marrow or blood. However, in the third cat, immune
complexes were elevated without alteration of virus expres-
sion (Fig. 1).

Previous studies have demonstrated that immunosuppres-
sive therapy such as corticosteroids and nitrosoareus signif-
ically impaired host resistance to experimental infection
with FeLV (29, 31) and allowed for the reactivation of latent
infection in FeLV-immune cats (29). The host immune
mechanisms which appeared to play a significant role in
clearing FeLV and preventing reactivation included com-
plement-dependent antibodies to FeLV-infected cells and anti-
body to virus alone (4, 12, 18, 19, 25).

In this study, we found that regressor cats made hypo-
complementemic by CVF treatment had evidence of in-
creased viral replication in bone marrow myelomonocytic
cells and elevated levels of circulating immune complexes,
suggesting a role for complement in preventing viral reac-
tivation. Although these cats did not develop the persistent
viremia seen when regressor cats were treated with pharma-
cological doses of steroids, this may be due to the difference
in degree and duration of immunosuppression achieved (1,
20, 21, 27).

The rise in circulating immune complexes which followed
CVF treatment is consistent with either an increase in
circulating antigen due to viral reactivation or alteration in
tissue binding and release of the complexes (23). It is not
possible to differentiate between these two mechanisms.

We conclude that FeLV may persist as a latent infection
in marrow myelomonocytic cells. Alteration in either the cel-
lular or humoral immune system which can occur due to
infection with other viruses or bacteria may lead to viral
recrudescence.

This work was supported by the American Cancer Society, Ohio
Division, by Public Health Service grants CA 31547, CA 30338,
and CA35747 from the National Cancer Institute, and by a DuPont
Fellowship Award. J.R. is a scholar of the Leukemia Society of
America, Inc.

LITERATURE CITED

Depletion of plasma complement in vivo by a protein of cobra
venom: its effect on various immunologic reactions. J. Im-
munol. 105:55-69.

Witkin. 1980. Circulating immune complexes associated with
126:2363--2366.

Feline sarcoma virus (FSV) induced tumors: correlation be-
tween humoral antibody and tumor regression. Nature (Lon-
don) 233:195-197.

Hardy, Jr. 1975. Immunosurveillance of naturally occurring

quantitative assay for both xenotropic murine leukemia and

Higgins. 1977. Antibodies from healthy cats exposed to feline
leukemia virus kill feline lymphoma cells slowly with cat

1980. Natural feline leukemia virus infection and the immune

8. Hardy, W. D., Jr., P. W. Hess, E. G. MacEwen, A. G. McClelland,
Biology of feline leukemia virus in the natural
environment. Cancer Res. 36:580-582.


The importance of an intact complement pathway in recovery
from a primary viral infection influenza in decomplemented and C5

cations of the immunofluorescence assay for feline leukemia virus

and immunologic response of cats to experimental infection
with feline leukemia virus, p. 180-183. In R. M. Dutcher and D.
S. Yohn (ed.), Comprehensive leukemia research. S. Karger,
Basel, Switzerland.

13. Hoover, E. A., R. G. Olsen, W. D. Hardy, Jr., J. P. Schaller,
variation response of cats to experimental infection. J. Natl.
Cancer Inst. 57:365-368.

1977. Relationship between feline leukemia virus antigen expres-
sion and viral infectivity in blood, bone marrow, and saliva of

15. Kobylinsky, L., W. D. Hardy, Jr., and N. Day. 1979. Hypocom-
plementemia associated with naturally occurring lymphosar-

16. Kobylinsky, L., W. D. Hardy, Jr., R. Ellis, S. S. Witkin, and
N. K. Day. 1980. In vitro activation of feline complement by

17. Lewis, G. K., F. Ranken, and J. W. Goodman. 1977. Compli-
ment dependent pathway of T cell-B cell cooperation. J. Im-
munol. 118:1744.


