Identification of an Enveloped Phage, Mycoplasma Virus L172, that Contains a 14-Kilobase Single-Stranded DNA Genome

KEVIN DYBVIG, JAN A. NOWAK, TODD L. SLADEK, AND JACK MANILOFF*

Department of Microbiology, Medical Center, University of Rochester, Rochester, New York 14642

Received 2 July 1984/Accepted 23 October 1984

We have found that mycoplasma virus L172 is an enveloped globular virion containing circular, single-stranded DNA of 14.0 kilobases. L172 has been reported by other workers to have a double-stranded DNA genome of 13 to 17 kilobase pairs and has been classified as a plasmavirus, a group for which mycoplasma virus L2 is the type member. Mycoplasma viruses L172 and L2 differ in genome size and structure, DNA base composition, and protein composition, and they have no detectable DNA homology. As the only reported enveloped virion containing single-stranded DNA, L172 represents a new group of viruses.

MATERIALS AND METHODS

Cells, viruses, and media. Host A. laidlawii strains JA1 (13), JA1-REP" (18), and K2 (9) have been described previously. Unless explicitly stated otherwise, K2 cells were used for all experiments.

The L2 mycoplasma virus used in these studies was the original group L2 isolate of Gourlay (7). The L172 mycoplasma virus, previously designated MV-Lg-ps2-L172, was isolated by Liska (10), and a sample was obtained from Paul Smith (University of South Dakota). The L1 virus used in these studies was mycoplasma virus isolate L51 (13).

Tryptose broth, containing 1% glucose and 1% PPLO serum fraction, was used for cultivating cells (12). Cell CFUs were assayed on tryptose agar plates containing 1% agar in tryptose broth. Virus PFUs were assayed in soft agar overlays of A. laidlawii on tryptose agar plates (19).

Purification of viruses and DNAs. L2 and L172 viruses were purified by sedimentation velocity in a linear 15 to 30% (wt/vol) sucrose gradient (5). L1 virus was purified by centrifugation in a CsCl step gradient (25). Viral DNAs were prepared by phenol extraction of purified viruses (5). A similar protocol was used to isolate host cell chromosomal DNA (4).

Intracellular L172 double-stranded, replicative-form (RF) DNA was isolated as follows. A 2-liter K2 culture was infected with L172 virus at a multiplicity of infection of 1 to 10. At 4 h postinfection, cells were harvested by centrifugation (6,000 rpm for 10 min at 4°C in a Beckman JA-10 rotor). The cell pellet was washed in TES buffer (10 mM Tris-hydrochloride, 1 mM EDTA, and 100 mM NaCl; pH 8.0) and suspended in 20 ml of 50 mM Tris-hydrochloride containing 10% sucrose, pH 8.0. Cells were lysed by the addition of 10 ml of 5% sodium dodecyl sulfate (SDS) in 0.25 M EDTA. Chromosomal DNA was precipitated by adding 7.5 ml of 5 M NaCl and incubating overnight at 4°C. The mixture was centrifuged at 26,000 rpm for 45 min at 4°C in a Beckman SW27 rotor to pellet large chromosomal DNA. The supernatant was extracted three times with phenol saturated with TES buffer. The aqueous layer was extracted with ether and DNA precipitated with ethanol. This DNA preparation contained L172 double-stranded, RF DNA plus RNA and cellular chromosomal DNA. The RNA was removed by digestion with RNase A followed by phenol extraction and ethanol precipitation. Cellular DNA was then removed by acid phenol extraction (27). The yield of L172 RF DNA was ca. 100 μg/liter of infected cells. Isolated DNA was identified...
Denhardt solution, 100 µg of denatured calf thymus DNA per ml, and 10% formamide. After hybridization, the filters were washed at room temperature for 30 min in 2× SSC containing 0.5% SDS, followed by a wash at room temperature for 30 min in 2× SSC containing 0.1% SDS. A final wash was at 49°C for 2 h in 0.1× SSC containing 0.1% SDS. Filters were examined by autoradiography using Kodak X-ray film (DF-85).

The probe DNA was prepared by nick translation (23). The specific activity of the L2 [32P]DNA was ca. 10^8 cpm/µg of DNA.

**DNA base composition analysis.** The base composition of L172 DNA was determined by high-pressure liquid chromatography, as described previously (5).

**Transfection and infection.** A polyethylene glycol-dependent transfection system was used (24, 25). L172 DNA (10 µg; isolated from virus propagated on JA1 cells) was used to transfect either 5.9 × 10^7 CFU of strain JA1 or 4.9 × 10^7 CFU of strain JA1-REP^+; the transfection mixture contained 50 µl of DNA, 250 µl of cells, and 2 ml of polyethylene glycol. Infectious centers were assayed by plating on JA1 lawns.

**Electron microscopy.** Virus samples were adsorbed to carbon-coated, 400-mesh electron microscope grids and negatively stained with 1.5% (wt/vol) uranyl acetate or 2% phosphotungstic acid. Micrographs were taken with a Siemens Elmiskop IA electron microscope with a liquid nitrogen decontamination device, a 50-µm objective aperture, and an 80-kV operating voltage.

L172 DNA was mixed with mycoplasma virus L1 single-stranded DNA in a solution containing 30% formamide and 70 µg of cytochrome c per ml, and was spread on a hypophase containing 20% formamide. Samples were picked up on collodion-coated, 400-mesh electron microscope grids, stained with uranyl acetate, shadowed with tungsten, and examined in the electron microscope (20). Contour length measurements were made on projections of electron micrographs by using an electronic planimeter.

**RESULTS**

**Relationship between L2 and L172.** At the start of these studies, we assumed that L172, like L2, was a plasmavirus. To investigate their similarity, the protein compositions of L2 and L172 virions were compared by SDS-polyacrylamide gel electrophoresis (Fig. 1). The L2 protein pattern was the same as that previously reported for L2 virions (e.g., in reference 21). However, the L172 protein composition was different from that of L2.

Homology between L2 and L172 DNAs was examined directly by DNA-DNA hybridization with the Southern blot technique. [32P]-labeled L2 DNA was incubated with filter-bound L2 and L172 DNAs, by using low-stringency hybridization conditions (see above). The L2 [32P]DNA probe hybridized to L2 DNA (Fig. 2, lane I) but not to L172 DNA (Fig. 2, lanes g and i to k). Hence, under these conditions there was no detectable homology between L2 and L172 DNAs.
the λ DNA was digested, but the L172 DNA was not (e.g., Fig. 2, lane e). A possible explanation for the resistance to nuclease cleavage is that L172 DNA might have contained a large fraction of modified bases. Therefore, the base composition of L172 DNA was analyzed by high-pressure liquid chromatography. These data, together with the reported base compositions of A. laidlawii strain K2 (the host used to grow L172 and L2 viruses for these studies) and L2 virus DNAs are shown in Table 2. L172 DNA had 1.4% of its cytosine methylated to 5-methylcytosine and 0.2% of its adenine methylated to N6-methyladenine. For comparison, K2 and L2 DNAs have 2.2 and 1.6%, respectively, of their cytosine methylated and 0.3% of their adenine methylated. This low level of methylated bases is not sufficient to account for the resistance of L172 DNA to restriction endonuclease cleavage, and no other modified bases could be detected.

The resistance of L172 DNA to restriction endonuclease cleavage and the observation that the electrophoretic bands of L172 DNA were more diffuse than expected led us to reexamine the structure of the L172 chromosome. In particular, the lack of cleavage and diffuse bands could be explained if the L172 genome was single- rather than double-stranded DNA as previously reported.

To investigate whether L172 DNA was single or double stranded, the L172 chromosome was treated with S1 nuclease, which is specific for single-stranded DNA, and analyzed by agarose gel electrophoresis. High concentrations of S1 nuclease (20 U per reaction mixture) completely digested

![Image of gel electrophoresis](http://jvi.asm.org/jvi781987f02.jpg)

**FIG. 2.** Analysis of L172 and L2 DNAs. Untreated and restriction endonuclease-treated DNAs were analyzed by agarose gel electrophoresis, stained with ethidium bromide (lanes a to f), transferred to nitrocellulose filters, hybridized against 32p-labeled L2 DNA, and examined by autoradiography (lanes g to l). Lanes: a and g, L172 DNA; b and h, coliphage λ DNA; c and i, mixture of L172 and λ DNAs; d and j, ClalI-treated L172 DNA; e and k, ClalI-treated mixture of L172 and λ DNAs; f and l, L2 DNA. The bottom half of the ethidium bromide-stained gel (corresponding to linear DNAs smaller than about 1.5 kbp) is not shown (lanes a to f). The only bands in this half of the gel were in lane e, the small λ DNA fragments generated by the ClalI digestion. The bottom three-quarters of the autoradiogram (corresponding to linear DNAs smaller than ca. 8.5 kbp) is not shown (lanes g to l). No bands were observed in this part of the autoradiogram.

**Characterization of L172 DNA.** L172 DNA was resistant to cleavage by most of the restriction endonucleases we examined (Fig. 2; Table 1). This was surprising since double-stranded DNA of 13 to 17 kbp (the reported size for L172 DNA [2, 3]) should contain sites for many of the nuclease sites tested. The activity of the enzymes was confirmed by showing that, in a mixture of L172 and coliphage λ DNAs,
L172 DNA, but only converted superhelical molecules of L2 DNA to relaxed circular and linear double-stranded molecules, without noticeable degradation (data not shown). Even at S1 nuclease concentrations so low (0.02 to 0.2 U per reaction mixture) that there was no effect on L2 DNA, L172 DNA was digested (Fig. 3, lane b). Hence, the L172 chromosome is single-stranded DNA.

We noted that L172 DNA produced two electrophoretic bands (Fig. 2 and 3, lanes a). Since both DNAs were digested by S1 nuclease (Fig 3, lane b), both must have been single stranded. It seemed most probable that one band was circular DNA and the other was linear DNA. To examine this possibility, we treated L172 DNA with ExoVII, which is a single-strand-specific exonuclease, and analyzed this treated DNA by agarose gel electrophoresis. ExoVII digested the faster migrating L172 DNA band, but not the slower migrating band (Fig. 4, lane b). Hence, the slower migrating L172 DNA band was circular, single-stranded DNA, and the faster-migrating band was linear, single-stranded DNA.

Electron microscope observations of L172 DNA confirmed that this DNA consisted of circular, single-stranded molecules (Fig. 5). Contour length measurements were made on a mixture of DNAs from L172 and L51 (a single-stranded DNA mycoplasma virus [20]). The L172/L51 contour length ratio was 3.21 ± 0.49. Since L51 DNA is 4,520 nucleotides (20), we estimated the size of the L172 genome as 14.5 ± 2.2 kb.

We concluded that the circular form of L172 DNA was the genome conformation, because (i) whereas the ratio of circular to linear molecules varied in L172 DNA preparations, the linear form was generally the minor species and in some cases was almost completely absent, and (ii) during storage at 4°C, purified L172 DNA was slowly converted from circular to linear molecules. Therefore, the linear form must have been generated from circular DNA by single-strand breaks during L172 DNA preparation and storage.

The double-stranded RF of L172 DNA was isolated from L172-infected cells. RF molecules were in two forms: covalently closed, circular molecules (RFI), and a relaxed, open, circular form of RFI (RFII). Most of the restriction endonucleases that could not cleave L172 viral single-stranded DNA were able to cleave L172 RF DNA (Table 1). Restriction endonuclease digests of L172 RF DNA were analyzed on agarose gels, and a cleavage site map of the L172 genome was constructed (Fig. 6). From these data, we estimated the size of L172 DNA to be 14.0 kb, in agreement with the electron microscopic results. Therefore, the L172 genome is a 14.0-kb molecule of circular, single-stranded DNA.

**L172 virion structure.** The fact that L172 is an enveloped virion was confirmed by studies showing its sensitivity to nonionic detergents. The survival fraction of L172 in 1% octyl glucoside was <10^-9, and in 0.4% Triton X-100, the survival fraction was <10^-7. For comparison, the survival...
fraction of enveloped L2 virions was <10⁻⁸ in both octyl glucoside and Triton X-100. The nonenveloped mycoplasma virus L51 was not inactivated by Triton X-100.

Electron microscopy of unfixed and glutaraldehyde-fixed L172 virions, negatively stained with uranyl acetate, showed globular particles about 60 to 80 nm in diameter, frequently with a protuberance (data not shown). However, no protuberance was seen in unfixed preparations negatively stained with phosphotungstic acid.

**L172 growth characteristics.** K2 cells lysogenic for L2 virus, designated K2(L2), are immune to superinfection by homologous (i.e., L2) virus but can be infected by heterologous mycoplasma virus (22). L172 plated with equal efficiency on both K2 and K2(L2) lawns (data not shown), indicating that cells lysogenic for L2 are not immune to L172 infection.

*A. laidlawii* strains K2 and JA1 have been shown to restrict and modify mycoplasma viruses (15). L172 also was found to be restricted and modified by these host cells; L172 virus grown on JA1 cells had an efficiency of plating of 0.06 on K2 relative to that of JA1 cells, and L172 virus grown on K2 cells had an efficiency of plating of 0.02 on JA1 relative to that of K2 cells. Similar restriction and modification frequencies were measured for transfection of L172 DNA and infection by L172 virions (data not shown), indicating that restriction and modification of L172 are mediated at the DNA level rather than at some other level (such as at viral adsorption).

JA1 cells can be infected by all three of the previously reported mycoplasma virus groups (L1, L2, and L3) as well as by L172. JA1-REP⁻ is a variant of JA1 that cannot propagate the single-stranded DNA mycoplasma virus group (L1) but can propagate double-stranded mycoplasma viruses (L2 and L3) (18). L172 virus also was able to grow on JA1 but not on JA1-REP⁻ cells (Table 3).

The experiment with JA1-REP⁻ cells suggests that the two single-stranded DNA mycoplasma viruses, L1 and L172, have some common host-dependent replication steps, although their morphology and genome size are different. In JA1-REP⁺ cells, L1 single-stranded DNA has been shown to be converted to parental double-stranded, RF molecules, but these are not replicable further to produce progeny RF molecules (18). This block in L1 replication in JA1-REP⁻ cells can be bypassed by transfection with either L1 single-stranded or RF DNA (25). Therefore, transfection was carried out with L172 DNA. L172 DNA transfected JA1 and JA1-REP⁺ with equal efficiency (Table 3), in agreement with there being some common replication requirements, which can be bypassed by transfection, for the two single-stranded DNA mycoplasma viruses in JA1-REP⁻ cells.

During virus purification, we noted that L172 preparations were heterogeneous. Velocity sedimentation in 15 to 30% sucrose gradients showed at least three peaks of L172 particles (data not shown). Similar sedimentation profiles have been reported for mycoplasma virus L2 (14) and apparently represent heterogeneity in the viral assembly process (S. K. Poddar, S. P. Cadden, J. Das, and J. Maniloff, submitted for publication).

**DISCUSSION**

The data presented in this paper show that mycoplasma virus L172 is an enveloped globular virus containing a genome of circular, single-stranded DNA of 14.0 kb. This is the only reported enveloped virus containing single-stranded DNA (cf. reference 17). The other known enveloped phage containing DNA is also a mycoplasma virus; mycoplasma virus L2 is an enveloped globular virus containing circular, double-stranded DNA of 11.8 kb (19). All other reported single-stranded DNA viruses have nucleocapsids with either icosahedral (e.g., parvovirus and phage φX174) or helical symmetry (e.g., phages fd and L1), containing 4.5 to 6.0 kb of DNA (reviewed in reference 17). Hence, L172 represents a new virus group.

Since our findings contradict previous reports on L172 protein composition and genome size and structure, we had to verify that we were studying the same L172 virus used by other workers. The morphology of L172 that we observed by electron microscopy was similar to that found by others (8, 11). L172 was sensitive to mild detergent treatment, as previously reported (8), confirming the presence of an envelope. L172 DNA base composition (Table 2) was very close to the results of Doskar et al. (2). Finally, all of the previously reported conclusions on L172 could be shown to be consistent with our results.

In the initial report on L172 DNA, Drasil et al. (3) observed double-stranded molecules in their DNA samples for electron microscopy. Their stated preparative conditions did not include the use of formamide or a similar reagent to stabilize single-stranded DNA, so single-stranded molecules in their L172 DNA samples should have collapsed and not been measurable. We have observed that crude preparations of mycoplasma virus L1 single-stranded DNA are usually contaminated with L1 double-stranded-DNA RF molecules (25). The L172 DNA preparations of Drasil et al. (3) may have been similarly contaminated with L172 RF molecules. Although they included no internal DNA size standard, their value of 13 kbp is close to the expected size of L172 RF DNA. The fact that Drasil et al. (3) indeed were studying a single-stranded DNA preparation (probably containing a minor fraction of RF DNA) is indicated by two of their other observations: (i) they noted only one peak of viral DNA by

### TABLE 3. L172 infection and transfection of JA1 and JA1-REP⁻ cells

<table>
<thead>
<tr>
<th>Infection with</th>
<th>Host cells</th>
<th>Infectious centers*</th>
<th>PFU/CFU (Relative no.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>L172 virus</td>
<td>JA1</td>
<td>6.7 x 10⁶</td>
<td>2.8 x 10⁻⁵ (1.0)</td>
</tr>
<tr>
<td></td>
<td>JA1-REP⁻</td>
<td>1.4 x 10²</td>
<td>7.0 x 10⁻⁷ (0.025)</td>
</tr>
<tr>
<td></td>
<td>None</td>
<td>7.0 x 10</td>
<td></td>
</tr>
<tr>
<td>L172 DNA</td>
<td>JA1</td>
<td>9.0 x 10³</td>
<td>1.5 x 10⁻⁴ (1.0)</td>
</tr>
<tr>
<td></td>
<td>JA1-REP⁻</td>
<td>8.7 x 10³</td>
<td>1.8 x 10⁻⁴ (1.2)</td>
</tr>
</tbody>
</table>

* Infectious centers were assayed as PFU on JA1 lawns.

A low background for a mock infection was also observed with mycoplasma virus L1 (25) and is believed to be due to residual virions not removed by washing before plating.
sedimentation velocity in both neutral and alkaline sucrose gradients, and (ii) they found that L172 was inactivated by a gamma radiation dose sufficient to cause only single-stranded breaks.

Later analytical-centrifugation results of Doskar et al. (2) appeared to confirm the size of the double-stranded DNA, with a value of 17 kbp calculated from a 39.6S sedimentation coefficient. However, if instead of an equation for superhelical DNA, the equation for single-stranded DNA is used (6), a size of 9.7 kbp is calculated. This value is lower than the actual 14.0-kb value, but not unreasonable in view of the lack of any correction for DNA concentration, the probability of intramolecular base pairing, all of the solvent corrections involved in the calculation, and the exponential relationship between sedimentation coefficient and molecular weight. The fact that a single-stranded DNA was being used in those studies is indicated by the observation of only a single peak of viral DNA by equilibrium centrifugation in neutral and alkaline CsCl gradients (2).

The report of Gourlay et al. (8) of similar protein compositions for L2 and L172 probably was due to cell membrane contamination in the virus preparations. Their gel pattern for L2 proteins was unlike those found for L2 virus (reviewed in reference 16). Cell membrane contamination has been shown to be a problem in purifying L2 and L172 virions (Fig. 1) (21). L2 and L172 have different protein compositions (Fig. 1), as expected in view of their lack of genetic homology (Fig. 2). The difference in virion composition is also seen in the finding of Gourlay et al. (8) of no detectable common antigens between L2 and L172.

As shown in the studies reported here, mycoplasma viruses L172 and L2 differ in their genome size and structure, DNA base composition, DNA homology, and protein composition. However, an interesting relationship is that both give rise to heterogeneous progeny viruses having similar sedimentation distributions. This may reflect some commonality in the budding mechanisms possible for assembly of enveloped viruses in mycoplasmas.

The two circular, single-stranded DNA mycoplasma viruses have different morphologies: L172 is an enveloped globular virion containing 14.0-kb DNA, and L1 is a naked, bullet-shaped virion containing 4.5-kb DNA (20). However, both single-stranded DNA viruses do not replicate in JA1-REP cells (Table 3); for L1, JA1-REP cells have been shown to have a block in the replication of double-stranded, RF DNA (18). This block can be circumvented by transfection, since JA1-REP cells can be transfected by L1 (25) and L172 DNAs (Table 3). These observations indicate that L1 and L172 have some common host-dependent replication steps.

In summary, mycoplasma virus L172 represents a new group of viruses, characterized by an enveloped virion containing 14.0-kb, single-stranded DNA. Morphologically (and perhaps in its assembly), L172 resembles the other enveloped mycoplasma virus group, L2. In terms of genome structure (and perhaps replication biochemistry), L172 appears similar to the single-stranded DNA mycoplasma virus group, L1.

ACKNOWLEDGMENTS

We thank David Swinton for carrying out the high-pressure liquid chromatography analysis described in this paper.

These studies were supported by Public Health Service grant GM 32442 from the National Institutes of Health.

LITERATURE CITED


