Reassortment of Simian Virus 40 DNA During Serial Undiluted Passage

MALCOLM A. MARTIN, LAWRENCE D. GELB, GEORGE C. FAREED, AND JULIE B. MILSTIEN
Laboratory of Biology of Viruses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20014

Received for publication 23 May 1973

Alterations occur in the supercoiled form of viral DNA after the serial undiluted passaging of simian virus (SV) 40. We have identified a portion of the viral genome which is amplified during this process. These SV40 DNA sequences represent about 30% of the viral genetic information and are present in a reiterated form in twisted circular molecules prepared from purified virions. In addition, reiterated and unique green monkey DNA sequences are incorporated into supercoiled viral DNA. The cellular DNA appears to be inserted at numerous locations in the DNA I molecules.

Infection of African green monkey cells with simian virus 40 (SV40) results in the sequential appearance of virus-specific antigens, newly replicated viral DNA, capsid proteins, and, finally, progeny virions. The success of the lytic interaction of SV40 and mammalian cells clearly requires the precise modulation of both nucleic acid and protein synthesis as well as the mechanism(s) needed for the assembly of virion components. Several recent reports have suggested that the conditions of infection can profoundly modify the resultant progeny.

Yoshiike, for example, demonstrated that the multiplicity of infection (MOI) used greatly affected the types of particles formed during the infection of monkey cells by SV40 (15, 16). He was able to produce two classes of defective virions by successive undiluted passage of virus. One type of defective virus (type 1) was prepared from a large-plaque variant of SV40 and could be isolated as a discrete low-density band after equilibrium density centrifugation in CsCl. Virions and the extracted supercoiled DNA from such “light” particles were noninfectious and failed to induce either tumor or viral antigens in susceptible cells (16). The DNA from this first type of defective virion was about 12% smaller than the DNA prepared from infectious particles and appeared to be homogeneous with respect to size. The second class of defective particles (type 2) was derived from the small-plaque variant of SV40 and did not form a discrete band in CsCl (15). These virions formed a broad band after isopycnic centrifugation in CsCl with a mean density slightly lower than that of infectious particles. These defective forms exhibited progressively lower infectivities that were associated with only a modest reduction in the ability to induce SV40 tumor antigen (15). The DNA isolated from virions on the light side of the main virus band was in the supercoiled configuration and was somewhat smaller than that purified from infectious particles.

Shortly thereafter, Aloni et al. (1) reported the preparation of SV40 which yielded supercoiled DNA molecules containing both viral and green monkey polynucleotide sequences. This observation was subsequently shown to be related to the MOI and the type of virus stock used to infect monkey cells (7). The undiluted, serial passaging of SV40 in BSC-1 cells resulted in the appearance of viral DNA which readily hybridized to both SV40 and monkey cellular DNAs. Heteroduplexes, prepared from single-nicked forms of these DNA molecules, contained both deletion and substitution loops presumably related, in some fashion, to the acquisition of host DNA sequences (13).

The emergence of these major changes in SV40 DNA composition occurring during serial undiluted passage of this virus led us to examine some of the properties of the altered viral genome. Alterations were detected by using the kinetics of DNA reassociation. As early as the third undiluted passage, a fraction of this serially passaged SV40 DNA, comprising about 20%
of the total, was found to reassociate five to seven times more rapidly than did standard small-plaque SV40 DNA. This fraction consisted entirely of SV40 DNA sequences which had been conserved (or preferentially amplified, or both) relative to other regions of the viral genome. The newly acquired monkey DNA appears to consist of both reiterated and unique sequences which are distributed throughout closed circular SV40 DNA molecules.

MATERIALS AND METHODS

Cell culture. Vero and CV-1 lines of African green monkey kidney cells were grown in Eagle II medium supplemented with 10% fetal calf serum. Primary African green monkey kidney cells were cultured in Earle basal salt solution medium supplemented with 0.5% lactalbumin hydrolysate and 10% fetal calf serum.

Virus. Plaque-purified large-, small-, and minute-plaque morphology variants of SV40 were generously supplied by Kenneth Takemoto. Standard small-plaque SV40 stocks were prepared by infecting primary monkey cells at an MOI of 0.1. In experiments involving serial undiluted passage of virus, monkey cells were initially infected at an MOI of 100 with plaque-purified virus. Infected cells and media were harvested at the time of maximal cytopathic effect, frozen and thawed three times, and added, undiluted, to monolayer cultures of green monkey cells. During the course of these studies, virus was successively passed in this fashion six times.

Preparation of viral DNA. Virus was prepared from both the medium and infected cells. Cells were sonicated and treated with 1.3% sodium deoxycholate for 20 min at 37°C in the presence of 0.025% trypsin. Virus in the medium and cell lysate was purified by sedimentation onto a CsCl cushion and followed by isopycnic centrifugation in CsCl as previously described (15, 5). Supercoiled viral DNA was prepared by treating purified virus with 1% sodium dodecyl sulfate at 50°C for 30 min followed by isopycnic centrifugation in the presence of ethidium bromide in CsCl as previously reported (5, 10, 14). ³²P-labeled virus was prepared from infected cells growing in phosphate-free Eagle II medium in the presence of carrier-free ³²P-orthophosphate (100 μCi/ml) (5). Labelled and unlabeled viral DNAs were mechanically sheared at 50,000 lb/in² in a Ribi cell fractionator (Ivan Sorvall) to a molecular size of 3.1 × 10⁶ daltons (5).

Preparation and fractionation of cellular DNA. Green monkey DNA was prepared from the nuclei of liver cells as previously outlined (5). Salmon sperm DNA was purchased from Mann Research Laboratories (New York, N.Y.). Cellular DNA was mechanically fragmented to a size of 3.1 × 10⁶ daltons as described above.

Reiterated and unique fractions of monkey DNA were prepared by allowing sheared, denatured, cellular DNA fragments (5 viral DNA molecules) to anneal for 2.5 h in 1.05 M NaCl at 68°C. This is equivalent to a Cₜₐ (2) of 880 in 0.12 phosphate buffer (PB) when a correction is made for salt concentration (3). Cₜₐ is defined as the product of the nucleic acid concentration (Cₜ) and the time (t) of the reassociation reaction expressed as moles of nucleotide x seconds per liter (2). The reaction mixture was diluted fivefold with distilled water and applied to a hydroxyapatite column equilibrated with 0.14 M PB at 60°C. The unique fraction was collected in the 0.14 M PB wash; reiterated monkey DNA was recovered by eluting the hydroxyapatite with 0.4 M PB. Each fraction was extensively dialyzed against 0.025 M EDTA and 0.05 M Tris-hydrochloride, pH 8.0, precipitated with 2 vol of cold ethanol, and dialyzed against 0.1 M NaCl before use.

DNA-DNA hybridization using DNA immobilized on nitrocellulose filters. DNA-DNA hybridization was carried out by using the procedure outlined by Denhardt (4). Each reaction mixture contained three 7-mm nitrocellulose filters containing standard SV40, green monkey liver, or no DNA, 4 × standard saline citrate (SSC), Denhardt preincubation mixture (4), and labeled DNA in a final volume of 0.25 ml. The DNA filters were extensively washed in 4 × SSC at 68°C as previously described (5), dried, and counted in a liquid scintillation spectrometer.

DNA-DNA reassociation in solution. ³²P-labeled viral DNA was allowed to reassociate in the presence or absence of unlabeled cellular or viral DNAs in reaction mixtures containing 2.5 mM EDTA and the indicated amounts of NaCl or PB, or both. Samples were removed at various times and analyzed for single- and double-stranded DNA on hydroxyapatite as previously described (5). The percentage of ³²P-labeled viral DNA reannealed at each point in time was plotted as a function of the Cₜₐ (2).

DNA reassociation was also evaluated with the single-strand specific nuclease isolated from Aspergillus oryzae (12). Samples (0.05 ml) of ³²P-labeled reassociating DNA were removed and added to a 2.0-ml mixture containing 0.03 M sodium acetate, pH 4.0, 0.1 M NaCl, 10⁻⁴ M ZnSO₄, and 60 μg of salmon sperm DNA. The reaction mixture was divided into two equal portions. An excess of the S₁ enzyme was added to one of the samples; both were incubated at 45°C for 1 h. The fraction of DNA resistant to the S₁ enzyme was determined from the nuclease-resistant radioactivity compared with the untreated sample.

Thermal denaturation of reassoclated DNA. Fragmented ³²P-labeled supercoiled DNA, isolated from standard small-plaque, serially passaged small-plaque, or serially passaged minute-plaque variants of SV40 were heat-denatured and allowed to reassociate to 240 times their respective Cₜₐ in 0.14 M PB. The reassociated DNAs were separately applied to columns (1 by 1 cm) of hydroxyapatite equilibrated with 0.14 M PB at 60°C. Each column was washed with 75 ml of 0.14 M PB at 60°C. Then 0.14 M PB was pumped through the column at a rate of 2.6 ml/min as the temperature was raised. Samples were collected over the temperature range 60 to 99.9°C, and the radioactive DNA was precipitated with 5% trichloroacetic acid in the presence of yeast RNA (10 μg/ml). The proportion of the total DNA eluted was plotted as a function of the temperature.

Specific fragmentation of defective SV40 DNA.
Escherichia coli RY-13 was provided by C. Mulder and the R₁ restriction endonuclease was purified from late log-phase cells of this strain as described by Mulder and Delius (9). The purified R₁ restriction endonuclease was assayed by measuring the conversion of 32P-labeled SV40 DNA I (1.4 × 10⁶ counts per min per µg) to DNA III. The reaction mixture (0.2 ml) consisted of 0.1 M Tris-hydrochloride, pH 7.5, 0.005 M MgCl₂, 10 to 30 ng of DNA I, and 0.1 to 0.5 U of R₁ restriction enzyme. The reactions were incubated at 37°C for 30 min and stopped by chilling to 0°C and adding 0.01 ml of 1% Sarkosyl and 0.01 ml of 0.2 M EDTA (pH 8.0). Conversion of DNA I to DNA III was rapidly assessed by brief heat denaturation of the samples and subsequent batch elution from hydroxyapatite (Fareed et al., manuscript in preparation). One unit of R₁ nuclease activity is defined as the amount needed to convert 0.1 µg of SV40 DNA I to DNA III under the assay conditions described above. Dilutions of the enzyme were made in 0.1 M Na₂HPO₄, (pH 7.5), 0.007 M β-mercaptoethanol, 0.3 M NaCl, and 0.001 M EDTA. The purified enzyme had a specific activity of 2 × 10⁴ U/mg of protein.

32P-labeled SV40 DNA from progeny virions of the sixth serially undiluted passage was cleaved with the R₁ restriction enzyme. The nuclease reaction mixtures contained 25 ng of 32P-labeled DNA I (1.6 × 10⁶ counts per min per µg), 49 ng of 32P-labeled SV40 DNA I and II (9.6 × 10⁶ counts per min per µg), from plaque-purified SV40 propagated at a low input MOI, and either 2 U of R₁ nuclease or no enzyme addition (control). After a 30-min incubation period at 37°C, the reactions were terminated as above. After the addition of 0.4 µg of 14C-DNA I and II (3.3 × 10⁸ counts per min per µg) to each sample, the DNAs were analyzed by sedimentation through linear sucrose gradients at pH 7.5, 0.1 M NaCl, and 0.001 M EDTA. Centrifugation was carried out for 8 h at 40,000 rpm in the SW 41 rotor (Spinco) at 10°C.

RESULTS

Our laboratory has previously examined supercoiled forms of SV40 DNA for the presence of green monkey DNA sequences (5). At that time we were unable to detect significant polynucleotide sequence homology between viral and monkey DNAs. Viral DNA prepared from virions propagated in primary and several different continuous green monkey cell lines failed to hybridize with host DNA immobilized on nitrocellulose filters. This viral DNA was thus ideally suitable as a probe for the detection of the small amounts of viral genetic information present in SV40-transformed cell lines. Our inability to verify the findings of Aloni et al. (1) was undoubtedly due to two factors: (i) virus was passaged at relatively low multiplicities and (ii) plaque-purified virus was used in all studies.

After the report by Lavi and Winocour (7), which showed that acquisition of green monkey DNA sequences by SV40 DNA required serial undiluted passage of virus, we attempted to repeat their findings and ascertain the mechanism of host sequence incorporation. We also wanted to determine the relationship of cell type and SV40 plaque morphology variants to this phenomenon. The small-plaque variant of SV40 was passaged undiluted three times in primary African green monkey, CV-1, and Vero cells; large-plaque and minute-plaque variants were serially passed in primary monkey cells. In all cases a single band of virus was present as determined by isopycnic centrifugation in CsCl. The supercoiled form of viral DNA, isolated from purified virus after serial high-multiplicity passage, sedimented more broadly than did the standard SV40 DNA I. This labeled SV40 DNA was mechanically sheared to fragments of 3 × 10⁴ daltons and incubated with nitrocellulose filters containing immobilized SV40 or green monkey DNA. The results of this experiment (Table 1) indicated that detectable polynucleotide sequence homology existed between these viral and monkey DNAs. The supercoiled DNAs from all plaque variants propagated in primary monkey cells contained host sequences; small-plaque SV40 serially passaged in Vero cells, however, did not incorporate detectable amounts of monkey DNA into its genome by the third passage.

Since it was apparent that SV40 DNA I isolated from serially passaged virus had been altered, we decided to examine its reassociation kinetics in order to further assess the changes that had occurred. The DNAs purified from the small- and minute-plaque variants grown in primary monkey cells and used in the experiments shown in Table 1 were allowed to reassociate for 24 h at 65°C before the samples were chilled to 0°C and precipitated with 4 volumes of ethanol. The precipitated DNA was then fragmented by incubation for 30 min at 65°C with 250 µg of proteinase K and 100 µg of 0.5 M mercaptoethanol before being washed in 75% ethanol.

Table 1. Reassociation of 32P-labeled SV40 DNA prepared from virions serially passaged three times with immobilized viral or cellular DNAs

<table>
<thead>
<tr>
<th>Cell type used to propagate virus</th>
<th>SV40 plaque variant used</th>
<th>32P-DNA (%) reacting with filters containing</th>
<th>Standard SV40 DNA</th>
<th>Monkey liver DNA</th>
<th>No DNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary AGMK*</td>
<td>Minute</td>
<td>64.9</td>
<td>3.0</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Primary AGMK</td>
<td>Small</td>
<td>45.7</td>
<td>2.4</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Primary AGMK</td>
<td>Large</td>
<td>57.2</td>
<td>2.4</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Primary AGMK</td>
<td>Small</td>
<td>51.1</td>
<td>1.2</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Primary AGMK</td>
<td>Small (low multiplicity)</td>
<td>57.0</td>
<td>0.14</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>CV-1</td>
<td>Small</td>
<td>66.7</td>
<td>0.04</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Vero</td>
<td>Small</td>
<td>66.7</td>
<td>0.04</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

*32P-labeled, fragmented, SV40 DNA (6 × 10⁸ µg) was incubated with filters containing approximately 1 or 18 µg of immobilized standard SV40 or green monkey DNA, respectively, as described in Materials and Methods.

AGMK, African green monkey kidney.
plaque
SV40
B, serially
described
heat-denatured
and
described
(2.9 \times 10^{-5} and 2 \times 10^{-6}) was abnormally flat, indicating the possible existence of a discrete fraction of reassociating DNA.

The homogeneity of the serially passed DNA was further assessed by examining the thermal stabilities of reassociated DNA preparations. The DNA isolated from undiluted serially passed small- and minute-plaque SV40 variants was allowed to reanneal to approximately 240 times their C_{t,0} and applied to hydroxyapatite equilibrated with 0.14 M PB at 60 C. Thermal elution profiles (Fig. 2) were obtained as described in Materials and Methods. A sample of reassociated standard small-plaque SV40 DNA was similarly analyzed and had a T_m of 91.8 C; reannealed DNA from serially passed small- and minute-plaque variants of SV40 had T_m values of 90.7 and 89.7 C, respectively, suggesting a small degree of mismatching of bases and indicating some heterogeneity of the viral DNA.

In order to isolate rapidly reassociating components, the serially passed DNAs prepared from the small- and minute-plaque variants were heat-denatured and allowed to reassociate in 0.14 M PB to a C_{t} of 10^{-4} (rapidly reassociating component), while the remaining 80% (slowly reassociating component) was collected in the initial 0.14 M PB eluate. The rapidly reassociating components were heat-denatured and allowed to reassociate in 0.14 M PB (left curve, Fig. 1A and B). This fraction of serially passed SV40 DNA reassociated five to six times faster than did standard small-plaque DNA, indicating that its genetic complexity was significantly less than that of viral DNA (3 \times 10^8 daltons).

In order to be certain that the rapidly reassociating component was unique to serially passed SV40 and was not an artifact of the

![Fig. 1. Reassociation kinetics of \(^{32}P\)-labeled SV40 DNA after three serial undiluted passages. Reaction mixtures containing 7.3 \times 10^{-4} or 2.2 \times 10^{-6} optical density units (ODU)/ml of unfracionated, fragmented, serially passed \(^{32}P\)-labeled SV40 DNA, 2.5 mM EDTA, and 0.14 M PB were heat-denatured and incubated at 60 C. Samples were removed at various times, the percentage of SV40 DNA reassociated was determined on hydroxyapatite, and the results were plotted as a function of \(^{32}P\)-labeled SV40 DNA C_{t} (\textcircled{O}). The \(^{32}P\)-labeled, rapidly reassociating DNA components (\textcircled{C}), isolated as described in the text, were allowed to reassociate at a concentration of 1.16 \times 10^{-5} ODU/ml at 60 C in the reaction mixture described above. Standard \(^{32}P\)-labeled SV40 DNA (D) (2.9 \times 10^6 counts per min per \mu g), prepared from purified virions passed at low multiplicities, was heat-denatured and allowed to reassociate at a concentration of 2.2 \times 10^{-6} ODU/ml in the reaction mixture described above. A, serially passed, small-plaque SV40 DNA (1.16 \times 10^6 counts per min per \mu g); B, serially passed, minute-plaque SV40 DNA (1.44 \times 10^6 counts per min per \mu g).](http://jvi.asm.org)
fractionation procedure, standard small-plaque SV40 DNA was denatured and allowed to reassociate to a Cot of 10^{-4}. Less than 3% of the standard SV40 DNA reannealed under these conditions. Since the rapidly reassociating component represented the 20% portion of serially passaged SV40 DNA which reannealed first, standard SV40 DNA was then fractionated by incubation to a Cot of 6×10^{-4}, and the 20% of the DNA which had reassociated was collected. This reannealed portion of standard SV40 DNA was denatured and allowed to reassociate in 0.14 M PB (Fig. 3). The kinetics of its reassociation were indistinguishable from unfractinated standard SV40 DNA. This is the result expected for a homogeneous DNA preparation.

The appearance of a relatively homogeneous fraction of DNA with a genetic complexity significantly less than that of standard SV40 DNA prompted us to propagate additional virus by further serial undiluted passage. We observed the previously reported (7) fall of SV40 infectivity and an increase in the amount of monkey DNA sequences incorporated into supercoiled forms of viral DNA with successive passage (Table 2). This DNA reassociated as a collection of molecules with varying reiteration frequencies (Fig. 4). A rapidly reassociating component was readily purified which reannealed about six times more rapidly than did standard SV40 DNA (left curve, Fig. 4). This fraction was similar to the rapidly reassociating DNA components isolated from purified virions which had been serially passaged three times.

The major portion (80%) of serially propagated SV40 DNA (slowly reassociating component), purified from virions after three or six successive undiluted passages, reassociated with Cot’s ranging from 1.8×10^{-3} to 2.3×10^{-3}. These values were very similar to those observed with standard SV40 DNA (2.0×10^{-3}) under these conditions.

Since serial undiluted passage of SV40 results in the incorporation of green monkey sequences into the supercoiled form of viral DNA (7), we decided to examine both the rapidly and slowly reassociating fractions to determine where the mammalian DNA was located. Because the rapidly reassociating component represented about 20% of serially passaged DNA, it seemed quite likely that it contained the host cell sequences. In order to ascertain the nature of the polynucleotide sequences present in the rapidly reannealing DNA fraction, we followed its reassociation in the presence of unlabeled standard viral or cellular DNAs. We have previously shown a direct relationship between the

Table 2. Reassociation of 32P-labeled SV40 DNA prepared from purified serially passaged virus with SV40 or cellular DNAs

<table>
<thead>
<tr>
<th>Passage no.</th>
<th>Infectivity (PFU/ml)</th>
<th>32P-DNA (%) Reacting with</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SV40 DNA</td>
<td>Monkey liver DNA</td>
</tr>
<tr>
<td>0</td>
<td>2.0 x 10^6</td>
<td>75.1</td>
</tr>
<tr>
<td>1</td>
<td>6.5 x 10^6</td>
<td>60.3</td>
</tr>
<tr>
<td>2</td>
<td>1.1 x 10^7</td>
<td>61.4</td>
</tr>
<tr>
<td>3</td>
<td>5.0 x 10^4</td>
<td>52.3</td>
</tr>
<tr>
<td>4</td>
<td>1.6 x 10^6</td>
<td>57.0</td>
</tr>
<tr>
<td>5</td>
<td>1.6 x 10^6</td>
<td>59.6</td>
</tr>
<tr>
<td>6</td>
<td>3.3 x 10^5</td>
<td>54.4</td>
</tr>
</tbody>
</table>

32P-labeled, fragmented SV40 DNA (1-8 x 10^{-3} µg) was incubated with filters containing approximately 1 or 18 µg of immobilized standard SV40 or green monkey DNA, respectively, as described in Materials and Methods.
SV40 DNA which has been conserved (or amplified) by serial undiluted passage. The reassociation of rapidly reannealing DNA components, isolated from other serially passaged virus preparations, was affected to similar extents by unlabeled standard SV40 DNA (Table 3).

A similar experiment was carried out with the 32P-labeled, slowly reassociating component to characterize the nature of its polynucleotide sequences. In the presence of an excess of unlabeled cellular DNA, the reassociation of the slowly reannealing component was accelerated 2.85-fold (Fig. 6, right panel). This effect was more than 16 times greater than that observed when labeled standard SV40 DNA was allowed to reassociate in the presence of a similar amount of unlabeled monkey DNA (5). This result indicates that the major fraction (slowly reassociating DNA component) of serially passaged DNA is greatly enriched for green monkey sequences. A surprising feature of this experiment is that the entire reassociation curve was shifted by the cellular DNA. This was unexpected in view of the apparently small amounts of monkey DNA present in the unfractionated, serially passaged, viral DNA. The reassociation of the slowly reannealing fraction was accelera-

![Diagram](http://jvi.asm.org/)

Fig. 4. Reassociation kinetics of 32P-labeled SV40 DNA after six serial, undiluted passages. Reaction mixtures containing 6.9×10^{-3} or 2.1×10^{-3} optical density units (ODU/ml) of unfractionated, fragmented, 32P-labeled SV40 DNA (O) isolated from virions passaged six times at high MOIs were heat-denatured and allowed to reassociate as described in Fig. 1. The 32P-labeled, rapidly reassociating DNA component was isolated from unfractionated, serially passaged DNA after incubation of heat-denatured DNA to a C$_{60}$ of 10^{-4} as previously described. The rapidly reassociating fraction (●) was then heat-denatured and allowed to reassociate at a concentration of 3.5×10^{-4} ODU/ml in 0.14 M PB. Standard SV40 DNA (Δ) was reassociated in 0.14 M PB at a concentration of 1.1×10^{-3} ODU/ml. DNA reassociation was monitored on hydroxyapatite columns as described in Materials and Methods.

amount of unlabeled standard SV40 DNA present in a reaction mixture and the rate of reassociation of a labeled SV40 DNA probe (5).

The experiment described in Fig. 5 (right panel) shows that green monkey DNA does not effectively alter the reassociation of the rapidly reannealing DNA component. This result indicates that no cellular DNA sequences are present in this fraction. A 12.7-fold excess of unlabeled standard SV40 DNA, however, accelerated the reassociation of the labeled, rapidly reannealing DNA fraction (Fig. 5, left panel), indicating the presence of viral DNA sequences. The reassociation of the rapidly reannealing fraction was increased by only a factor of 4.1. This result suggests that the rapidly reannealing component contains only a portion (32%) of the viral DNA sequences present in standard

![Diagram](http://jvi.asm.org/)

Fig. 5. Reassociation of 32P-labeled, rapidly reannealing DNA component in the presence of unlabeled standard SV40 or green monkey DNAs. Left panel: the 32P-labeled, rapidly reannealing DNA fraction from the sixth undiluted serial passage was heat-denatured and allowed to reassociate in 0.14 M PB at a concentration of 3.2×10^{-5} optical density units (ODU/ml) in the presence of 4.0×10^{-4} ODU/ml of fragmented unlabeled SV40 (O) or salmon sperm (●) DNAs. Right panel: The 32P-labeled, rapidly reannealing DNA component (3.2×10^{-4} ODU/ml) was allowed to reassociate in 0.14 M PB in the presence of 8.1 ODU/ml of fragmented, unlabeled green monkey (O) or salmon sperm (●) DNAs. The proportion of 32P-labeled DNA reassociated was determined on hydroxyapatite.
TABLE 3. Reassociation of rapidly reassociating
\(^{32}P \)-DNA component in the presence of unlabeled
SV40 DNA

<table>
<thead>
<tr>
<th>Labeled SV40 DNA</th>
<th>Unlabeled standard SV40 DNA/serially passaged (^{32}P)-SV40 DNA</th>
<th>Increase rate factor</th>
<th>Increase rate factor/Expected rate factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serially passaged five times</td>
<td>22.5</td>
<td>7.2</td>
<td>.32</td>
</tr>
<tr>
<td>Serially passaged five times</td>
<td>1077</td>
<td>352</td>
<td>.33</td>
</tr>
<tr>
<td>Serially passaged six times</td>
<td>12.7</td>
<td>4.1</td>
<td>.32</td>
</tr>
<tr>
<td>Standard SV40 passaged at low multiplicity</td>
<td>5.2</td>
<td>5.0</td>
<td>.96</td>
</tr>
</tbody>
</table>

Fig. 6. Reassociation of \(^{32}P \)-labeled, slowly reannealing DNA component in the presence of unlabeled standard SV40 or green monkey DNAs. Left panel: the \(^{32}P \)-labeled, slowly reannealing DNA fraction from the sixth undiluted serial passage was heat-denatured and allowed to reassociate in 0.14 M PB at a concentration of 2.0 \(\times 10^{-4} \) optical density units (ODU)/ml in the presence of 3.8 \(\times 10^{-4} \) ODU/ml of fragmented, unlabeled SV40 (O) or salmon sperm (●) DNAs. Right panel: \(^{32}P \)-labeled, slowly reannealing DNA component (2.0 \(\times 10^{-4} \) ODU/ml) was allowed to reassociate in 0.14 M PB in the presence of 61 ODU/ml of fragmented, unlabeled green monkey (O) or salmon sperm (●) DNAs. Samples were analyzed on hydroxyapatite.

tag by unlabeled standard SV40 DNA, although the effect was 87% of that expected for an 18.5-fold excess of viral DNA (Fig. 6, left panel).

In order to characterize the cellular sequences incorporated into serially passaged viral DNA, the experiment described in Fig. 7 was carried out. Unlabeled green monkey DNA fragments were denatured and incubated to a Cot of 880. The preparation was applied to a hydroxyapatite column and the reiterated and unique DNA fractions were collected as described in Methods. Under the conditions used, approximately 10% of the true "single-copy" DNA sequences reannealed and should have been present in the reiterated DNA fraction. \(^{32}P \)-labeled, slowly reassociating DNA, prepared from serially passaged virus, was allowed to reassociate in the presence of equal amounts of either the reiterated or unique green monkey DNA fractions. Whereas both fractions of cellular DNA accelerated the reassociation of the DNA probe, the reiterated monkey sequences had a greater effect. If one assumes that the incorporated cellular sequences are representative of the green monkey genome, this observation probably reflects the fact that the cellular

Fig. 7. Reassociation of \(^{32}P \)-labeled, slowly reannealing DNA component in the presence of unlabeled reiterated or unique green monkey DNA fractions. The \(^{32}P \)-labeled, slowly reannealing DNA fraction from the sixth undiluted serial passage was heat-denatured and allowed to reassociate in 0.14 M PB at a concentration of 1.97 \(\times 10^{-4} \) optical density units (ODU)/ml in the presence of 14.1 ODU/ml of fragmented, unlabeled reiterated (▲) or unique (■) green monkey or salmon sperm (●) DNAs. Samples were analyzed on hydroxyapatite.
DNAs reassocitated to a C* of 815 during their incubation with the labeled probe. This is sufficient to allow nearly all of the repetitious DNA sequences to react with complementary sequences in the labeled probe. However, no more than 20% of the unique cellular DNA sequences react under these conditions, and this could explain the apparent lower efficiency of the non-reiterated fraction in accelerating the reassociation of the labeled DNA probe.

The R, restriction endonuclease of E. coli cleaves SV40 DNA I at a specific site, converting it to unique linear DNA molecules (DNA III) (8, 9). It has been previously reported that a large fraction of viral DNA prepared from virions that have been serially passaged at high multiplicities are resistant to the R, restriction enzyme (9). The experiment shown in Fig. 8 indicates that approximately 60% of the supercoiled DNA isolated from serially passaged virus is not cleaved by the enzyme. In addition, a discrete cleavage product, sedimenting at 9S in neutral sucrose, appeared along with DNA III. This 9S product, which represented about 10% of the labeled DNA, was purified from preparative neutral sucrose gradients and subsequently analyzed by sedimentation through neutral sucrose (Fig. 8B). The purified 9S product sedimented as a relatively homogeneous population of molecules with a peak S value of 9.3. This is equivalent to DNA molecules approximately 7.5 x 10^6 daltons in size (11). A small amount (16%) of contaminating DNA III was also present in this 9S DNA preparation.

The purified 32P-labeled 9S component was heat-denatured and allowed to reassociate in 0.14 M PB. Fragmented DNA I, isolated from standard SV40, as well as the rapidly reannealing DNA component, were similarly denatured and the kinetics of DNA reassociation were examined. The results of this experiment (Fig. 9) indicate that the 9S cleavage product reanneals about 3.2 times more rapidly than does standard SV40 DNA. The DNA reassociation curve for the 9S DNA, in contrast to the one obtained for the rapidly reannealing component, has a slope identical to that for standard SV40 DNA, reflecting the homogeneity of the cleavage product. The genetic complexity of 9S DNA is approximately 31% of standard SV40 DNA. This value is very similar to the one obtained from experiments in which the 32P-labeled, rapidly reassociating component was allowed to reassociate in the presence of unlabelled standard SV40 DNA (Fig. 5 and Table 3).

DISCUSSION

The serially passaged SV40 we have described in this report shares many properties with the type 2 defective particles isolated by Yoshiike which were also propagated by passaging small-plaque SV40 in primary green monkey cells. In all cases only a single band of virus appeared,
and the isolated SV40 DNA sedimented as a broad band. This kind of defective SV40 is different from type 1, which forms a discrete "light" virus band (16) in addition to a fully infectious and apparently normal virus band after isopycnic centrifugation in CsCl. The DNA isolated from type 1 "light" particles is homogeneous in size, is missing specific SV40 DNA sequences, and contains no host cell DNA (Martin et al., manuscript in preparation).

Our experiments characterizing serially passaged viral DNA are in agreement with those of Lavi and Winocour (7), who reported an incorporation of monkey DNA sequences into the supercoiled form of SV40 DNA. The closed circular DNA molecules isolated from purified virions propagated in such a manner sedimented in a broader band than did standard viral DNA, and about two-thirds lacked the R1 restriction endonuclease site. Both of these observations have been noted previously (9, 15).

As pointed out above, the kinetics of serially passaged viral DNA reassociation differ from those observed for standard SV40 DNA and do not fit the theoretical curve for a second-order reaction. This is undoubtedly due to the presence, in the population of supercoiled DNA molecules, of DNA sequences with varying reiteration frequencies. The slightly lower thermal stability of reassociated, serially passaged viral DNA is further evidence of its heterogeneity.

Previous studies have concentrated on the insertion of host cell DNA sequences into the closed circular form of viral DNA. Our results indicate that the alterations of SV40 DNA involve both viral and mammalian DNA sequences. The presence of a rapidly reassociating DNA component, unique to serially passaged virus and composed entirely of SV40 DNA sequences, contributes greatly to the observed heterogeneity of unfractionated DNA. This component reassociates five to seven times faster than does standard viral DNA, suggesting that its genetic complexity is considerably less than that of SV40 DNA. Since the rapidly reassociating fraction isolated on hydroxyapatite is not completely homogeneous, we cannot determine what proportion of the SV40 genome it represents. When it is allowed to reassociate in the presence of unlabeled viral DNA, this component behaves as if it contained 30% of the information present in SV40 DNA (Fig. 5 and Table 3). The 9S component, however, prepared by digesting DNA I isolated from serially passaged virus, reassociates like a homogeneous DNA preparation and appears to have a genetic complexity equivalent to 31% of SV40 DNA (Fig. 9). Since the bulk of the DNA (slowly reannealing fraction), isolated from virus passaged at high multiplicity, reassociated with a C4v+ very similar to standard SV40, it seems most likely that the 9S product represents a homogeneous form of the rapidly reassociating component.

The 9S component arose after treatment of serially passaged viral DNA I with the R1 restriction endonuclease. Its appearance suggests that a portion of the supercoiled DNA contains three to four R1 sites. In this regard we have observed DNA I molecules containing three symmetrically placed R1 sites in preparations of an SV40-like virus obtained from a patient with progressive multifocal leukoencephalopathy (Fareed and Martin, manuscript in preparation). Thus, the alteration of viral DNA sequences we have described (rapidly reassociating component and 9S product) may be distinct from the process involved in the incorporation of cellular DNA sequences. A specific region (about 30%) of the viral genome appears to be reiterated in supercoiled DNA molecules containing three to four R1 sites.

Fig. 9. Reassociation of 32P-labeled 9S DNA cleavage product. 9S 32P-labeled DNA was produced by digesting the supercoiled DNA, obtained from purified virions after six undiluted serial passages, with R1 restriction endonuclease as described in Materials and Methods and Fig. 8. The purified 9S DNA component (Fig. 8B) was heat-denatured and allowed to reassociate in 0.14 M PB at a concentration of 6.2 × 10-4 optical density units (ODU)/ml (●). The rapidly reannealing SV40 DNA fraction from the sixth undiluted passage (△) and standard SV40 DNA (○), both labeled with 32P, were heat-denatured and allowed to reassociate at concentrations of 5.4 × 10-4 and 1.9 × 10-4 ODU/ml, respectively. All samples were incubated at 60°C and analyzed on hydroxyapatite.
The monkey DNA sequences incorporated into serially passaged viral DNA are associated with the DNA component that has reassociation kinetics similar to those of standard SV40 DNA. Our studies indicate that both reiterated and unique mammalian DNA sequences become incorporated into viral DNA (Fig. 6). Another aspect of the acquired monkey DNA sequences deserves comment. When the slowly reannealing DNA component was reassociated in the presence of cellular DNA, the entire reaction was accelerated (Fig. 6 and 7). This result was unexpected in view of the small amounts of green monkey DNA found in the unfractionated viral DNA by filter hybridization assays (Tables 1 and 2). One explanation for the shift of the entire reassociation curve is that the cellular DNA may be inserted at numerous locations in the closed circular viral DNA molecules. The labeled, slowly reassociating DNA fragments used in these studies consist predominantly of SV40 DNA sequences (Fig. 6). The small portion consisting of monkey DNA must be present in a majority of the 3×10^4 dalton DNA fragments since the reassociation curve is symmetrically displaced by the unlabeled cellular DNA. It is known that hydroxyapatite does not discriminate between partially and completely duplexed nucleic acid structures (6). In this case, the portion of each labeled DNA fragment containing cellular DNA sequences is apparently able to form a stable duplex with the unlabeled monkey DNA. The entire molecule then behaves like double-stranded DNA on hydroxyapatite columns even though it is predominantly single stranded.

ACKNOWLEDGMENTS

We thank Janet C. Byrne for technical assistance. J. B. M. was supported by Public Health Service special fellowship #1 F03 CA53384-01 of the National Cancer Institute.

LITERATURE CITED