Deoxyribonucleic Acid-Dependent Nucleotide Phosphohydrolase Activity in Purified Vaccinia Virus

ENZO PAOLETTI AND BERNARD MOSS

Laboratory of Biology of Viruses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20014

Received for publication 31 July 1972

A nucleotide phosphohydrolase (adenosine triphosphatase), which is associated with vaccinia virus cores, has been solubilized and shown to be deoxyribonucleic acid dependent.

Vaccinia virions contain at least five enzymatic activities: these include a deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase (12, 14), a nucleotide phosphohydrolase (adenosine triphosphatase; references 8, 15), two deoxyribonucleases (3, 18), and a protein kinase (17). None of the enzymes has yet been extracted from vaccinia virus cores and purified. In this note, we describe the solubilization of the nucleotide phosphohydrolase and the unexpected finding that the enzymatic activity is dependent on DNA.

Although the nucleotide phosphohydrolase can be released from the virus particle with sodium deoxycholate (Paoletti and Munyon, unpublished results), little activity remains in the supernatant fraction after high-speed centrifugation (Table 1, minus DNA). Further experiments with 3H-thymidine-labeled vaccinia virus indicated that the viral DNA is released during the deoxycholate treatment and that less than 10% is sedimented at 38,000 × g but greater than 95% is sedimented at 136,000 × g. This observation led us to consider that the nucleotide phosphohydrolase might be a DNA-dependent enzyme and that loss of activity after high-speed centrifugation results from sedimentation of the viral DNA. DNA was added to the virus extracts to test this hypothesis. Addition of denatured salmon sperm DNA to the 136,000 × g supernatant fraction leads to more than a 200-fold stimulation of deoxyribose triphosphatase activity (Table 1). When the 136,000 × g supernatant fraction is sedimented on a glycerol gradient, a single major peak of DNA-dependent nucleotide phosphohydrolase activity is detectable (Fig. 1). Similar results are obtained whether the nucleotide phosphohydrolase is extracted from whole virus or fractions 5, 10, and 15. The concentration of virus in the dissociation mixture was optical density at 260 nm of 58 per ml. A 200-μl portion was applied to a 10 to 30% glycerol gradient in 0.1 M Tris-hydrochloride, pH 8.0, 0.05 M dihydrothreitol. After centrifugation in the SW65 rotor at 60,000 rev/min for 14.5 hr, 15-drop fractions were collected from the bottom of the tube. Nucleotide phosphohydrolase activity was measured as in Table 1.
VOL. 10, sodium and virus

Untreated

Deoxycholate-treated virus

Total

38,000 × g supernatant fraction

136,000 × g supernatant fraction

- DNA +DNA

14.9 76.2 5.1

12.5 62.8 5.0

5.2 49.6 9.5

0.1 28.2 282.0

Vaccinia virus, purified by sedimentation through a sucrose cushion and two sucrose gradient centrifugations (10, 13), at a concentration of optical density at 260 nm of 29 per ml was dissociated with 0.3 M tris(hydroxymethyl)aminomethane (Tris), pH 8.4, 0.05 M dithiothreitol, and 0.1% sodium deoxycholate at 0 C for 15 min. The mixture was centrifuged at 38,000 × g for 30 min at 4 C and the supernatant fraction was recovered. This supernatant fraction was then centrifuged at 136,000 × g for 1 hr. Equivalent amounts of untreated virus, total deoxycholate-treated virus, and low- and high-speed supernatant fractions were tested for adenosine triphosphatase activity. The reaction mixture (0.1 ml) contained 0.1 M Tris-hydrochloride, pH 8.4; 1 mM MgCl2; 50 mM dithiothreitol; 1 mM 3H-ATP, specific activity 200 counts per min per n mole; 0.1% Nonidet P-40 detergent; 25 μg of denatured salmon sperm DNA (Calbiochem) where indicated. After incubation at 37 C for 5 and 15 min, 10-uliter samples were spotted on top of dried nucleotide standards on PEI cellulose (J. T. Baker Chemical Co.). The chromatographic plates were developed with 1 N CH3COOH-4 M LiCl (8:2, v/v) as previously described (19). ADP spots observed under ultraviolet light were cut out, and radioactivity was measured in a liquid scintillation counter.

bacterial enzymes also have ATP-dependent deoxyribonuclease activity and are thought to function in recombination, whereas others are without detectable deoxyribonuclease activity. It will not be possible to determine the presence of a coupled ATP-dependent deoxyribonuclease activity until the vaccinia virus nucleotide phosphohydrolase is obtained in a highly purified form, since both the endo- and exonuclease activities are released from vaccinia virus by the deoxycholate treatment (Rosemond, Paolletti, and Moss, unpublished results).

Reovirus (4, 11) and frog virus (21) also contain nucleotide phosphohydrolase activities within their cores. We suggest that tests be made for RNA and DNA dependence during attempts to purify these enzymes.

We thank Norman Cooper for growing and purifying vaccinia virus.

LITERATURE CITED

