Selective Gene Transcription in Bacteriophage T4 by Putrescine

CHANNA SHALITIN

Department of Chemistry, Technion—Israel Institute of Technology, Haifa, Israel

Received for publication 11 April 1967

Messenger ribonucleic acid (mRNA) preparations from T4-infected cells formed in the presence or absence of putrescine have been characterized and compared. Hybrid competition experiments indicate that these mRNA molecules are derived from distinct genetic loci. The results are consistent with the hypothesis that putrescine might control differential transcription of the phage genome during morphogenesis. The data are also in accord with previously observed changes in the population of mRNA formed at different times after infection.

The naturally occurring diamine, putrescine, leaks out of host cells immediately after T4 phage infection (6). If putrescine is added to the growth medium during infection, it differentially affects the synthesis of “early” and “late” proteins (21). Phage deoxyribonucleic acid (DNA) synthesis is markedly decreased in the presence of putrescine, and late functions, e.g., synthesis of phage-induced lysozyme and appearance of mature phage, are inhibited. This inhibition starts immediately after infection and is completely reversible. On the other hand, early functions are enhanced by the diamine (21). The aim of the present study was to elucidate the mechanism of putrescine action on phage-directed protein synthesis. The results demonstrate that differential transcription of the phage genome takes place in the presence of the diamine.

Materials and Methods

Chemicals. Thymine-2-14C (specific activity 40.2 mc/m mole) and 3H-uridine (1.44 c/m mole) were purchased from the Radiochemical Centre, Amersham, England. Pronase and putrescine dihydrochloride were supplied by Calbiochem, Los Angeles, Calif.

Bacterial strains. Escherichia coli B was obtained from F. W. Stahl. E. coli B thy− (a thymine-requiring mutant) was obtained from D. Freifelder.

Bacteriophage strains. T4 wild type and T4BeJ 42, a lysosomeless mutant, were kindly supplied by G. Streisinger. The mutant was used to avoid lysis of infected bacteria during the experiment.

Phage stocks were made by a procedure suggested by G. Streisinger (22). For phage assay, the standard procedures described by Adams were used (1).

Media. M9 and Tris-glucose media were the same as described in the preceding paper (21).

Preparation of T4BeJ 42 specific ribonucleic acid (RNA). For preparation of “early” messenger RNA (mRNA), 100 ml of infected E. coli B cells was given a pulse of 3H-uridine (1 mc/ml; specific activity, 1.44 c/m mole) 3 min after infection. For preparation of “late” mRNA, the infected cells were given a pulse of 3H-uridine 17 min after infection. The duration of the pulse was 2 min, and the temperature of incubation was 37 C. The pulse was ended by pouring the infected cells onto 40 ml of frozen SSC (0.15 m NaCl, 0.015 m Na citrate) containing 0.01 m sodium azide. Unlabeled RNA was prepared by pouring infected cells onto frozen SSC at 5 min for “early” RNA and at 19 min for “late” RNA. After centrifugation, the pellet was suspended in 10 ml of SSC and frozen in dry ice-acetone. After thawing at 20 C in the presence of 1 mg of pronase per ml, the cells were lysed by 0.2% sodium dodecyl sulfate (SDS) and incubated at 37 C for 7 hr, as in a recently described procedure for DNA isolation (24). The solution was then extracted twice with phenol and dialyzed against 0.01 m phosphate buffer (pH 6.7). The resulting solution was then loaded onto hydroxyapatite columns, and a linear PO4 gradient (0.01 to 0.35 m) was applied to separate the assorted micromolecules, RNA and DNA. Alternatively, stepwise elution was applied. The labeled RNA was then concentrated by reloading on hydroxyapatite and eluted by a small volume of 6 × SSC, which quantitatively removes it from the column (C. Shalitin and C. Thomas, Jr., unpublished data).

Preparation of bacteriophage DNA. A thymine-requiring strain of E. coli B was grown overnight in M9 minimal medium supplemented with 5 μg of thymine per ml. A 1-ml amount of the overnight culture was transferred into 100 ml of fresh M9 medium containing 5 μg of thymine per ml. The culture was aerated at 37 C for 3.5 hr, until a concentration of 2 × 108 cells per ml was attained. The culture was infected by phage T4D (wild type) in the presence of tryptophan at a multiplicity of infection of three phage particles per bacterium. At 10 min after infection, thymine-2-14C (final concentration, 0.1 μc/ml; specific
activity, 40.2 mc/mn mole) was added; the culture was further aerated at 37 C for 3 hr and was then lysed by chloroform (11). Phage was purified by two cycles of differential centrifugation. After phenol extraction (23), the DNA was finally loaded onto a hydroxyapatite column for purification. The DNA was eluted from the column by small volumes of 6 X SSC.

Preparation and operation of hydroxyapatite columns for purification of DNA and RNA were carried out according to Bernardi (3) and Miyazawa and Thomas (18).

Hybridization experiments. The hybridization experiments were done by the procedure of Gillespie and Spiegelman (8).

Native 14C-DNA preparations (260 counts per min per mug) or nonlabeled DNA preparations were denatured in alkali. The denaturation was done by 2-min exposure of the DNA to 0.3 X NaOH in SSC at 0 C. followed by neutralization with 0.3 X HCl in 6 X SSC. Denatured DNA, 0.33 to 1.0 mug/ml, was immobilized on nitrocellulose membrane filters (type B-6, coarse, 25 mm; Schleicher & Schuell Co., Keene, N.H.). The DNA filters were subsequently dried at room temperature and at 80 C for an additional 2 to 4 hr in a vacuum oven. 1H-RNA-14C-DNA hybrids were formed by immersing the DNA filters in vials containing 4 ml of 1H-RNA in 6 X SSC. Annealing was carried out for 4 to 24 hr at 60 C without shaking (as specified in the legends to the figures), after which the vials were chilled in an ice bath. Filters without DNA or with heterologous DNA were immersed in each vial as a background control. RNA not complexed with DNA was destroyed by immersing the thoroughly washed filters for 1 hr at room temperature in 2 ml of 2 X SSC, containing 2.5 mug of pancreatic ribonuclease per ml (heated for 1 min at 80 C to destroy residual deoxyribonuclease activity). After ribonuclease treatment, the filters were washed thoroughly on both sides with 2 X SSC buffer. Finally, the filters were dried overnight at room temperature and counted in a Packard Tri-Carb scintillation counter. The channels were set for simultaneous counting of 1H and 14C. Corrections for spillover between the channels were made. The approximate counting efficiencies were 20% for 1H and 65% for 14C.

RESULTS

Characterization of T4 mRNA synthesized in the presence of putrescine. If regulation of the sequential events following phage infection occurs at the level of transcription, the sequential appearance of "early" and "late" proteins should be paralleled by the sequential production of "early" and "late" mRNA species (9, 10, 12). A convenient and reliable method for estimating the fraction of DNA functioning in transcription at a given time after infection is the hybridization technique. When increasing amounts of RNA are added to a constant amount of DNA, a saturation plateau is attained. This plateau is a measure of the number of different DNA sites to which RNA binds, and from this it is possible to estimate the fraction of DNA involved in transcription.

The ability of T4 mRNA made in the presence of putrescine to form hybrids with complementary strands of DNA was tested by use of immobilized T4 DNA.

The hybridizability of mRNA preparations formed at "early" or "late" times after infection was compared to the hybridizability of the corresponding mRNA preparations, formed in the presence of putrescine. As shown in Fig. 1, early mRNA formed in the presence of putrescine reaches a low saturation plateau which contains about half of the normal early 1H RNA. Furthermore, it is clearly shown in Fig. 1 that the same saturation plateaus are attained by "early"
mRNA and by "late" mRNA formed in the presence of putrescine. However, in the absence of putrescine, the saturation plateau of "late" mRNA contains 1.5 times more \(^{3}H\) hybridizable RNA. This result indicates that there are many more sites on the DNA complementary to normal "late" mRNA than to "late" mRNA made in the presence of putrescine or to "early" mRNA.

It is noteworthy that the same efficiency of annealing is displayed by all mRNA preparations tested in the range of excess DNA. (See initial slopes of curves in Fig. 1.)

Competition experiments. The normal pattern of competition between labeled "early" and "late" mRNA preparations and unlabeled homologous and heterologous RNA is shown in Fig. 2a and 2b.

It can be seen in Fig. 2a and 2b that the homologous unlabeled mRNA preparations competed more effectively with the corresponding labeled mRNA preparations tested. Thus, hybrid competition experiments could be exploited to

![Diagram](http://jvi.asm.org)
determine the nature of mRNA formed in the presence of putrescine. The pattern of competition between labeled 19-min RNA formed in the presence of putrescine and unlabeled 5-min RNA is shown in Fig. 2c. Both unlabeled “early” and “late” preparations compete effectively with “late” mRNA formed in the presence of putrescine.

Comparing Fig. 2c with Fig. 2a and 2b shows that the population of mRNA made between 17 and 19 min in the presence of putrescine is different from the normal population of “late” mRNA. The identity of “late” mRNA formed in the presence of putrescine is further elucidated in a competition experiment showing its poor ability to compete with normal 3H “late” RNA for binding sites on the DNA (see Table 1). Table 1 substantiates the finding that 19-min RNA made in the presence of putrescine contains early mRNA and lacks any detectable amounts of “late” messenger species. It was of interest to test whether all the RNA species transcribed at early times are transcribed also at late times in the presence of putrescine.

Table 2 illustrates the results of a competition experiment in which 3H early RNA was annealed to T4 DNA in the presence of various nonlabeled RNA preparations. As shown in Table 2, 19-min RNA made in the presence of putrescine was an effective competitor for “early” mRNA, the competition being similar to normal 5-min RNA. These results imply that similar genetic loci are transcribed during 3 to 5 min after infection, and during 17 to 19 min after infection in the presence of putrescine. Furthermore, it is demonstrated in Table 2 that early RNA formed in the presence of putrescine is lacking some RNA species (see also Fig. 1).

As demonstrated in the preceding paper (21), there was a significant inhibition of DNA synthesis in the presence of putrescine. Further studies on DNA synthesis under the present experimental conditions were undertaken, to test whether DNA replication is required for the shift from “early” to “late” mRNA synthesis. It is obvious from the results in Fig. 3 that, at the time (19 min at 37°C) of “late” mRNA preparation in the presence of putrescine, DNA synthesis was 90% inhibited. On the other hand, it is clearly demonstrated that, very late after infection (50 min at 37°C) in the presence of putrescine, DNA was synthesized at a normal rate. To test whether DNA synthesis was sufficient for the switch to “late” RNA synthesis, phage-infected complexes grown in the presence of putrescine were pulse-labeled between 50 and 52 min at 37°C. RNA was extracted and analyzed by competition experiments. The results of a typical experiment are shown in Fig. 4. When normal 50 to 52 min 3H-RNA was tested under the same experimental conditions, the same results were obtained. It is thus demonstrated that “late” mRNA species are synthesized in the presence of the

Table 2. Relative efficiency of annealing 3H early RNA to T4 DNA in the presence of various nonlabeled RNA preparations

<table>
<thead>
<tr>
<th>Vial no.</th>
<th>Nonlabeled RNA</th>
<th>Relative H retained on filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>None</td>
<td>1.00</td>
</tr>
<tr>
<td>2</td>
<td>5 min, 355 µg</td>
<td>0.48</td>
</tr>
<tr>
<td>3</td>
<td>19 min, 200 µg</td>
<td>0.30</td>
</tr>
<tr>
<td>4</td>
<td>19 min, 340 µg, + putrescine</td>
<td>0.57</td>
</tr>
</tbody>
</table>

*Hybridization mixtures containing a constant amount (15.7 µg) of 3H late mRNA (input 40 × 10⁶ counts per min) were annealed to 10 µg of immobilized T4 DNA in the presence of various unlabeled RNA preparations for 24 hr at 60°C. Unlabeled RNA preparations were the same as described in the footnote to Table 2.

A value of 1.0 = 41% of input radioactivity.
Khesin et al. (13) concluded that all early mRNA species are lacking in late RNA preparations. These discrepancies are probably due to the different hybridization technique used by these authors. The addition of putrescine soon after infection seems to inhibit the synthesis of some category of early mRNA species (see Fig. 1 and Table 2). This result is in accord with the immediate inhibition of RNA synthesis in phage-infected bacteria in the presence of putrescine, as demonstrated in the preceding paper (21).

Results of competition experiments with mRNA formed at late times in the presence of putrescine show a marked relative increase in the abundance of early mRNA species at late times. Furthermore, preferential inhibition of late mRNA synthesis is observed (see Table 1). However, it seems likely that some category of "late" mRNA is formed at 19 min in the presence of putrescine. This may be the reason for the strikingly greater relative competition of unlabeled late RNA with this 3H late preparation, compared to its competition with 3H early RNA (Fig. 2c compared to Fig. 2a).

We may suggest, on the basis of the data presented, that putrescine, or a natural metabolite diamine as soon as DNA synthesis proceeds normally.

DISCUSSION

Hybridization and competition techniques make it possible quantitatively to detect messenger RNA preparations homologous to specific phage genomes, thus enabling us to detect various categories of T4 mRNA. It is clear that there are at least four different patterns of proteins synthesized after T4 infection (14): very early proteins, intermediate early, and late early proteins; in addition, there is another class of late proteins. The same patterns were shown for the early mRNA species (W. Salser, personal communication). The experiments reported here agree with those of other investigators (2, 7, 9, 10) in showing that the RNA species synthesized immediately after infection are present throughout the latent period, and that at least some of them continue to be synthesized throughout the eclipse period (Fig. 2b shows that about 66% of late RNA seems to be identical to early RNA). On the other hand, some early mRNA species are lacking in late RNA preparations (Fig. 2a shows that about 63% of early RNA is lacking in late RNA).
derived from it, might be the factor controlling the synthesis of "early" and "late" mRNA during the latent period.

If late mRNA synthesis is controlled through the inhibition by putrescine, then the rate of late mRNA synthesis should be determined by the intracellular concentration of the diamine. Thus, immediately after infection, when adequate amounts of putrescine are present, "early" proteins are synthesized preferentially (4). Late proteins, on the other hand, are detectable only after maximal leakage (6) of putrescine out of infected cells has occurred. We assume that the differential action of putrescine on mRNA synthesis may be the result of its inhibition of DNA synthesis. The hypothesis that DNA replication acts by quantitatively and qualitatively changing mRNA synthesis has been put forth (17, 19). Our data might offer further support to this basic concept. Furthermore, at early times after infection (3 to 5 minutes at 37 C), when no quantitative change in the amount of DNA has yet occurred, the inhibition of DNA synthesis seems to lead to the inability to transcribe part of the genome. It has been recently shown that T4 mutants which fail to make DNA do not synthesize any of the late mRNA species (W. Salser, personal communication). Since the DNA of phage T4 is relatively rich in adenine-thymidine (AT) base pairs, its sensitivity to polyamines which have a special affinity to AT base pairs (15, 16) is not surprising.

The addition of putrescine to T4-infected bacteria, which inhibits DNA synthesis, enables us to stretch out the time scale of sequential mRNA synthesis. Thus, mRNA species normally synthesized 5 min after infection are synthesized 19 min after infection, and those normally synthesized 19 min after infection are synthesized 52 min after infection.

It would be of interest to test the possibility of the existence of some T4 mutants unable to synthesize DNA because of a defect in their polyamine leakage mechanism.

ACKNOWLEDGMENTS

I thank Ruth Ben-Ishai for her stimulating discussions and help in preparing this manuscript and F. W. Stahl for his permanent interest and encouragement. The excellent technical assistance of Hilda Friedman is gratefully acknowledged.

LITERATURE CITED

